Optimal. Leaf size=27 \[ x+\frac {x (3+x) (3+2 x) \log (3)}{-4+2 e^x-\log (4)} \]
________________________________________________________________________________________
Rubi [C] time = 3.90, antiderivative size = 936, normalized size of antiderivative = 34.67, number of steps used = 62, number of rules used = 16, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.157, Rules used = {6741, 12, 6742, 2185, 2184, 2190, 2531, 6609, 2282, 6589, 2191, 2279, 2391, 36, 29, 31} \begin {gather*} \frac {\log (9) x^4}{8 (2+\log (2))}-\frac {\log (3) (4+\log (4)) x^4}{8 (2+\log (2))^2}-\frac {\log (9) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x^3}{2 (2+\log (2))}+\frac {\log (3) (4+\log (4)) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x^3}{2 (2+\log (2))^2}+\frac {\log (27) x^3}{6 (2+\log (2))}-\frac {\log (3) (6+\log (8)) x^3}{2 (2+\log (2))^2}-\frac {\log (3) (4+\log (4)) x^3}{2 (2+\log (2)) \left (2-e^x+\log (2)\right )}+\frac {\log (3) (4+\log (4)) x^3}{2 (2+\log (2))^2}-\frac {\log (27) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x^2}{2 (2+\log (2))}+\frac {3 \log (3) (6+\log (8)) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x^2}{2 (2+\log (2))^2}-\frac {3 \log (3) (4+\log (4)) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x^2}{2 (2+\log (2))^2}-\frac {3 \log (9) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right ) x^2}{2 (2+\log (2))}+\frac {3 \log (3) (4+\log (4)) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right ) x^2}{2 (2+\log (2))^2}-\frac {\log (19683) x^2}{4 (2+\log (2))}-\frac {\log (3) (18+\log (512)) x^2}{4 (2+\log (2))^2}-\frac {3 \log (3) (6+\log (8)) x^2}{2 (2+\log (2)) \left (2-e^x+\log (2)\right )}+\frac {3 \log (3) (6+\log (8)) x^2}{2 (2+\log (2))^2}+\frac {\log (19683) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x}{2 (2+\log (2))}+\frac {\log (3) (18+\log (512)) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x}{2 (2+\log (2))^2}-\frac {3 \log (3) (6+\log (8)) \log \left (1-\frac {e^x}{2+\log (2)}\right ) x}{(2+\log (2))^2}-\frac {\log (27) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right ) x}{2+\log (2)}+\frac {3 \log (3) (6+\log (8)) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right ) x}{(2+\log (2))^2}-\frac {3 \log (3) (4+\log (4)) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right ) x}{(2+\log (2))^2}+\frac {3 \log (9) \text {Li}_3\left (\frac {e^x}{2+\log (2)}\right ) x}{2+\log (2)}-\frac {3 \log (3) (4+\log (4)) \text {Li}_3\left (\frac {e^x}{2+\log (2)}\right ) x}{(2+\log (2))^2}-\frac {\log (19683) x}{2 (2+\log (2))}-\frac {\log (3) (18+\log (512)) x}{2 (2+\log (2)) \left (2-e^x+\log (2)\right )}+\frac {\log (3) (18+\log (512)) x}{2 (2+\log (2))^2}+x+\frac {\log (19683) \log \left (2-e^x+\log (2)\right )}{2 (2+\log (2))}-\frac {\log (3) (18+\log (512)) \log \left (2-e^x+\log (2)\right )}{2 (2+\log (2))^2}+\frac {\log (19683) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right )}{2 (2+\log (2))}+\frac {\log (3) (18+\log (512)) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right )}{2 (2+\log (2))^2}-\frac {3 \log (3) (6+\log (8)) \text {Li}_2\left (\frac {e^x}{2+\log (2)}\right )}{(2+\log (2))^2}+\frac {\log (27) \text {Li}_3\left (\frac {e^x}{2+\log (2)}\right )}{2+\log (2)}-\frac {3 \log (3) (6+\log (8)) \text {Li}_3\left (\frac {e^x}{2+\log (2)}\right )}{(2+\log (2))^2}+\frac {3 \log (3) (4+\log (4)) \text {Li}_3\left (\frac {e^x}{2+\log (2)}\right )}{(2+\log (2))^2}-\frac {3 \log (9) \text {Li}_4\left (\frac {e^x}{2+\log (2)}\right )}{2+\log (2)}+\frac {3 \log (3) (4+\log (4)) \text {Li}_4\left (\frac {e^x}{2+\log (2)}\right )}{(2+\log (2))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 2531
Rule 6589
Rule 6609
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{2 x}+\left (-36-72 x-24 x^2\right ) \log (3)+e^x \left (-16+\left (18+18 x-6 x^2-4 x^3\right ) \log (3)-4 \log (4)\right )+\left (8+\left (-9-18 x-6 x^2\right ) \log (3)\right ) \log (4)+16 \left (1+\frac {\log ^2(4)}{16}\right )}{\left (2 e^x-4 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx\\ &=\int \frac {4 e^{2 x}+\left (-36-72 x-24 x^2\right ) \log (3)+e^x \left (-16+\left (18+18 x-6 x^2-4 x^3\right ) \log (3)-4 \log (4)\right )+\left (8+\left (-9-18 x-6 x^2\right ) \log (3)\right ) \log (4)+16 \left (1+\frac {\log ^2(4)}{16}\right )}{4 \left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {4 e^{2 x}+\left (-36-72 x-24 x^2\right ) \log (3)+e^x \left (-16+\left (18+18 x-6 x^2-4 x^3\right ) \log (3)-4 \log (4)\right )+\left (8+\left (-9-18 x-6 x^2\right ) \log (3)\right ) \log (4)+16 \left (1+\frac {\log ^2(4)}{16}\right )}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx\\ &=\frac {1}{4} \int \left (4+\frac {2 x \log (3) \left (-18-x^2 (4+\log (4))-3 x (6+\log (8))-\log (512)\right )}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2}+\frac {2 \left (-x^3 \log (9)-x^2 \log (27)+\log (19683)+x \log (19683)\right )}{e^x-2 \left (1+\frac {\log (2)}{2}\right )}\right ) \, dx\\ &=x+\frac {1}{2} \int \frac {-x^3 \log (9)-x^2 \log (27)+\log (19683)+x \log (19683)}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx+\frac {1}{2} \log (3) \int \frac {x \left (-18-x^2 (4+\log (4))-3 x (6+\log (8))-\log (512)\right )}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx\\ &=x+\frac {1}{2} \int \left (\frac {x^3 \log (9)}{-e^x+2 \left (1+\frac {\log (2)}{2}\right )}+\frac {x^2 \log (27)}{-e^x+2 \left (1+\frac {\log (2)}{2}\right )}+\frac {\log (19683)}{e^x-2 \left (1+\frac {\log (2)}{2}\right )}+\frac {x \log (19683)}{e^x-2 \left (1+\frac {\log (2)}{2}\right )}\right ) \, dx+\frac {1}{2} \log (3) \int \left (\frac {x^3 (-4-\log (4))}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2}+\frac {3 x^2 (-6-\log (8))}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2}+\frac {x (-18-\log (512))}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2}\right ) \, dx\\ &=x-\frac {1}{2} (\log (3) (4+\log (4))) \int \frac {x^3}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx-\frac {1}{2} (3 \log (3) (6+\log (8))) \int \frac {x^2}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx+\frac {1}{2} \log (9) \int \frac {x^3}{-e^x+2 \left (1+\frac {\log (2)}{2}\right )} \, dx+\frac {1}{2} \log (27) \int \frac {x^2}{-e^x+2 \left (1+\frac {\log (2)}{2}\right )} \, dx-\frac {1}{2} (\log (3) (18+\log (512))) \int \frac {x}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx+\frac {1}{2} \log (19683) \int \frac {1}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx+\frac {1}{2} \log (19683) \int \frac {x}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx\\ &=x+\frac {x^4 \log (9)}{8 (2+\log (2))}+\frac {x^3 \log (27)}{6 (2+\log (2))}-\frac {x^2 \log (19683)}{4 (2+\log (2))}-\frac {(\log (3) (4+\log (4))) \int \frac {e^x x^3}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx}{2 (2+\log (2))}+\frac {(\log (3) (4+\log (4))) \int \frac {x^3}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}-\frac {(3 \log (3) (6+\log (8))) \int \frac {e^x x^2}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx}{2 (2+\log (2))}+\frac {(3 \log (3) (6+\log (8))) \int \frac {x^2}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}+\frac {\log (9) \int \frac {e^x x^3}{-e^x+2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}+\frac {\log (27) \int \frac {e^x x^2}{-e^x+2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}-\frac {(\log (3) (18+\log (512))) \int \frac {e^x x}{\left (e^x-2 \left (1+\frac {\log (2)}{2}\right )\right )^2} \, dx}{2 (2+\log (2))}+\frac {(\log (3) (18+\log (512))) \int \frac {x}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}+\frac {1}{2} \log (19683) \operatorname {Subst}\left (\int \frac {1}{x (-2+x-\log (2))} \, dx,x,e^x\right )+\frac {\log (19683) \int \frac {e^x x}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}\\ &=x-\frac {x^4 \log (3) (4+\log (4))}{8 (2+\log (2))^2}-\frac {x^3 \log (3) (4+\log (4))}{2 (2+\log (2)) \left (2-e^x+\log (2)\right )}-\frac {x^3 \log (3) (6+\log (8))}{2 (2+\log (2))^2}-\frac {3 x^2 \log (3) (6+\log (8))}{2 (2+\log (2)) \left (2-e^x+\log (2)\right )}+\frac {x^4 \log (9)}{8 (2+\log (2))}+\frac {x^3 \log (27)}{6 (2+\log (2))}-\frac {x^2 \log (3) (18+\log (512))}{4 (2+\log (2))^2}-\frac {x \log (3) (18+\log (512))}{2 (2+\log (2)) \left (2-e^x+\log (2)\right )}-\frac {x^2 \log (19683)}{4 (2+\log (2))}-\frac {x^3 \log (9) \log \left (1-\frac {e^x}{2+\log (2)}\right )}{2 (2+\log (2))}-\frac {x^2 \log (27) \log \left (1-\frac {e^x}{2+\log (2)}\right )}{2 (2+\log (2))}+\frac {x \log (19683) \log \left (1-\frac {e^x}{2+\log (2)}\right )}{2 (2+\log (2))}+\frac {(\log (3) (4+\log (4))) \int \frac {e^x x^3}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))^2}-\frac {(3 \log (3) (4+\log (4))) \int \frac {x^2}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}+\frac {(3 \log (3) (6+\log (8))) \int \frac {e^x x^2}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))^2}-\frac {(3 \log (3) (6+\log (8))) \int \frac {x}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2+\log (2)}+\frac {(3 \log (9)) \int x^2 \log \left (1-\frac {e^x}{2 \left (1+\frac {\log (2)}{2}\right )}\right ) \, dx}{2 (2+\log (2))}+\frac {\log (27) \int x \log \left (1-\frac {e^x}{2 \left (1+\frac {\log (2)}{2}\right )}\right ) \, dx}{2+\log (2)}+\frac {(\log (3) (18+\log (512))) \int \frac {e^x x}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))^2}-\frac {(\log (3) (18+\log (512))) \int \frac {1}{e^x-2 \left (1+\frac {\log (2)}{2}\right )} \, dx}{2 (2+\log (2))}-\frac {\log (19683) \int \log \left (1-\frac {e^x}{2 \left (1+\frac {\log (2)}{2}\right )}\right ) \, dx}{2 (2+\log (2))}-\frac {\log (19683) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )}{2 (2+\log (2))}+\frac {\log (19683) \operatorname {Subst}\left (\int \frac {1}{-2+x-\log (2)} \, dx,x,e^x\right )}{2 (2+\log (2))}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 1.47, size = 316, normalized size = 11.70 \begin {gather*} x+\frac {x \left (x^2 \log (9)+\log (19683)+x \log (19683)\right )}{-4+2 e^x-\log (4)}-\frac {9 \log (3) \log \left (4-2 e^x+\log (4)\right )}{4+\log (4)}+\frac {\log (4) \log \left (4-2 e^x+\log (4)\right )}{4+\log (4)}+\frac {\log \left (\frac {19683}{4}\right ) \log \left (4-2 e^x+\log (4)\right )}{4+\log (4)}-\frac {2 \log (27) \left (x \log \left (\frac {4-2 e^x+\log (4)}{4+\log (4)}\right )+\text {Li}_2\left (\frac {2 e^x}{4+\log (4)}\right )\right )}{4+\log (4)}+\frac {3 \log (3) \left (x \left (x+2 \log \left (1-\frac {1}{2} e^{-x} (4+\log (4))\right )\right )-2 \text {Li}_2\left (\frac {1}{2} e^{-x} (4+\log (4))\right )\right )}{4+\log (4)}+\frac {6 \log (3) \left (x^2 \log \left (\frac {4-2 e^x+\log (4)}{4+\log (4)}\right )+2 x \text {Li}_2\left (\frac {2 e^x}{4+\log (4)}\right )-2 \text {Li}_3\left (\frac {2 e^x}{4+\log (4)}\right )\right )}{4+\log (4)}-\frac {\log (9) \left (x^2 \left (x+3 \log \left (1-\frac {1}{2} e^{-x} (4+\log (4))\right )\right )-6 x \text {Li}_2\left (\frac {1}{2} e^{-x} (4+\log (4))\right )-6 \text {Li}_3\left (\frac {1}{2} e^{-x} (4+\log (4))\right )\right )}{4+\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 43, normalized size = 1.59 \begin {gather*} \frac {2 \, x e^{x} + {\left (2 \, x^{3} + 9 \, x^{2} + 9 \, x\right )} \log \relax (3) - 2 \, x \log \relax (2) - 4 \, x}{2 \, {\left (e^{x} - \log \relax (2) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 119, normalized size = 4.41 \begin {gather*} \frac {2 \, x^{3} \log \relax (3) + 9 \, x^{2} \log \relax (3) + 2 \, x e^{x} + 9 \, x \log \relax (3) - 2 \, x \log \relax (2) + 2 \, e^{x} \log \left (e^{x} - \log \relax (2) - 2\right ) - 2 \, \log \relax (2) \log \left (e^{x} - \log \relax (2) - 2\right ) - 2 \, e^{x} \log \left (-e^{x} + \log \relax (2) + 2\right ) + 2 \, \log \relax (2) \log \left (-e^{x} + \log \relax (2) + 2\right ) - 4 \, x - 4 \, \log \left (e^{x} - \log \relax (2) - 2\right ) + 4 \, \log \left (-e^{x} + \log \relax (2) + 2\right )}{2 \, {\left (e^{x} - \log \relax (2) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 28, normalized size = 1.04
method | result | size |
risch | \(x -\frac {\left (2 x^{2}+9 x +9\right ) \ln \relax (3) x}{2 \left (\ln \relax (2)-{\mathrm e}^{x}+2\right )}\) | \(28\) |
norman | \(\frac {\left (2-\frac {9 \ln \relax (3)}{2}+\ln \relax (2)\right ) x -\frac {9 x^{2} \ln \relax (3)}{2}-x^{3} \ln \relax (3)-{\mathrm e}^{x} x}{\ln \relax (2)-{\mathrm e}^{x}+2}\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.89, size = 434, normalized size = 16.07 \begin {gather*} -\frac {9}{2} \, {\left (\frac {x}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {\log \left (e^{x} - \log \relax (2) - 2\right )}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {1}{{\left (\log \relax (2) + 2\right )} e^{x} - \log \relax (2)^{2} - 4 \, \log \relax (2) - 4}\right )} \log \relax (3) \log \relax (2) + {\left (\frac {x}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {\log \left (e^{x} - \log \relax (2) - 2\right )}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {1}{{\left (\log \relax (2) + 2\right )} e^{x} - \log \relax (2)^{2} - 4 \, \log \relax (2) - 4}\right )} \log \relax (2)^{2} - 9 \, {\left (\frac {x}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {\log \left (e^{x} - \log \relax (2) - 2\right )}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {1}{{\left (\log \relax (2) + 2\right )} e^{x} - \log \relax (2)^{2} - 4 \, \log \relax (2) - 4}\right )} \log \relax (3) + 4 \, {\left (\frac {x}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {\log \left (e^{x} - \log \relax (2) - 2\right )}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {1}{{\left (\log \relax (2) + 2\right )} e^{x} - \log \relax (2)^{2} - 4 \, \log \relax (2) - 4}\right )} \log \relax (2) - \frac {{\left (9 \, \log \relax (3) - 2 \, \log \relax (2) - 4\right )} \log \left (e^{x} - \log \relax (2) - 2\right )}{2 \, {\left (\log \relax (2) + 2\right )}} + \frac {2 \, {\left (\log \relax (3) \log \relax (2) + 2 \, \log \relax (3)\right )} x^{3} + 9 \, {\left (\log \relax (3) \log \relax (2) + 2 \, \log \relax (3)\right )} x^{2} + 9 \, x e^{x} \log \relax (3) - {\left (9 \, \log \relax (3) - 8\right )} \log \relax (2) + 2 \, \log \relax (2)^{2} - 18 \, \log \relax (3) + 8}{2 \, {\left ({\left (\log \relax (2) + 2\right )} e^{x} - \log \relax (2)^{2} - 4 \, \log \relax (2) - 4\right )}} + \frac {4 \, x}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {4 \, \log \left (e^{x} - \log \relax (2) - 2\right )}{\log \relax (2)^{2} + 4 \, \log \relax (2) + 4} - \frac {4}{{\left (\log \relax (2) + 2\right )} e^{x} - \log \relax (2)^{2} - 4 \, \log \relax (2) - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.27, size = 35, normalized size = 1.30 \begin {gather*} x-\frac {x\,\left (\ln \relax (9)\,x^2+9\,\ln \relax (3)\,x+2\,\ln \relax (2)+\ln \left (\frac {19683}{4}\right )\right )}{2\,\left (\ln \relax (2)-{\mathrm {e}}^x+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 36, normalized size = 1.33 \begin {gather*} x + \frac {2 x^{3} \log {\relax (3 )} + 9 x^{2} \log {\relax (3 )} + 9 x \log {\relax (3 )}}{2 e^{x} - 4 - 2 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________