Optimal. Leaf size=28 \[ \frac {e^{25}+\left (4-\frac {e^{-3-x}}{2}-\frac {x}{4}\right )^2}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.50, antiderivative size = 52, normalized size of antiderivative = 1.86, number of steps used = 12, number of rules used = 8, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.151, Rules used = {12, 6742, 2197, 14, 2199, 2194, 2177, 2178} \begin {gather*} \frac {x}{16}+\frac {e^{-x-3}}{4}+\frac {e^{-2 x-6}}{4 x}-\frac {4 e^{-x-3}}{x}+\frac {16+e^{25}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \frac {e^{-6-2 x} \left (-4-8 x+e^{3+x} \left (64+64 x-4 x^2\right )+e^{6+2 x} \left (-256-16 e^{25}+x^2\right )\right )}{x^2} \, dx\\ &=\frac {1}{16} \int \left (-\frac {4 e^{-6-2 x} (1+2 x)}{x^2}-\frac {256+16 e^{25}-x^2}{x^2}-\frac {4 e^{-3-x} \left (-16-16 x+x^2\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{16} \int \frac {256+16 e^{25}-x^2}{x^2} \, dx\right )-\frac {1}{4} \int \frac {e^{-6-2 x} (1+2 x)}{x^2} \, dx-\frac {1}{4} \int \frac {e^{-3-x} \left (-16-16 x+x^2\right )}{x^2} \, dx\\ &=\frac {e^{-6-2 x}}{4 x}-\frac {1}{16} \int \left (-1+\frac {16 \left (16+e^{25}\right )}{x^2}\right ) \, dx-\frac {1}{4} \int \left (e^{-3-x}-\frac {16 e^{-3-x}}{x^2}-\frac {16 e^{-3-x}}{x}\right ) \, dx\\ &=\frac {e^{-6-2 x}}{4 x}+\frac {16+e^{25}}{x}+\frac {x}{16}-\frac {1}{4} \int e^{-3-x} \, dx+4 \int \frac {e^{-3-x}}{x^2} \, dx+4 \int \frac {e^{-3-x}}{x} \, dx\\ &=\frac {e^{-3-x}}{4}+\frac {e^{-6-2 x}}{4 x}-\frac {4 e^{-3-x}}{x}+\frac {16+e^{25}}{x}+\frac {x}{16}+\frac {4 \text {Ei}(-x)}{e^3}-4 \int \frac {e^{-3-x}}{x} \, dx\\ &=\frac {e^{-3-x}}{4}+\frac {e^{-6-2 x}}{4 x}-\frac {4 e^{-3-x}}{x}+\frac {16+e^{25}}{x}+\frac {x}{16}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 49, normalized size = 1.75 \begin {gather*} \frac {1}{16} \left (\frac {4 e^{-6-2 x}}{x}+\frac {16 \left (16+e^{25}\right )}{x}+x-\frac {4 e^{-3-x} \left (16 x-x^2\right )}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 38, normalized size = 1.36 \begin {gather*} \frac {{\left ({\left (x^{2} + 16 \, e^{25} + 256\right )} e^{\left (2 \, x + 6\right )} + 4 \, {\left (x - 16\right )} e^{\left (x + 3\right )} + 4\right )} e^{\left (-2 \, x - 6\right )}}{16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 47, normalized size = 1.68 \begin {gather*} \frac {{\left (x^{2} e^{9} + 4 \, x e^{\left (-x + 6\right )} + 16 \, e^{34} + 256 \, e^{9} - 64 \, e^{\left (-x + 6\right )} + 4 \, e^{\left (-2 \, x + 3\right )}\right )} e^{\left (-9\right )}}{16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 41, normalized size = 1.46
method | result | size |
risch | \(\frac {x}{16}+\frac {{\mathrm e}^{25}}{x}+\frac {16}{x}+\frac {\left (x -16\right ) {\mathrm e}^{-3-x}}{4 x}+\frac {{\mathrm e}^{-2 x -6}}{4 x}\) | \(41\) |
derivativedivides | \(\frac {3}{16}+\frac {x}{16}+\frac {16}{x}+\frac {{\mathrm e}^{25}}{x}+\frac {{\mathrm e}^{-2 x -6}}{4 x}-\frac {4 \,{\mathrm e}^{-3-x}}{x}+\frac {{\mathrm e}^{-3-x}}{4}\) | \(47\) |
default | \(\frac {3}{16}+\frac {x}{16}+\frac {16}{x}+\frac {{\mathrm e}^{25}}{x}+\frac {{\mathrm e}^{-2 x -6}}{4 x}-\frac {4 \,{\mathrm e}^{-3-x}}{x}+\frac {{\mathrm e}^{-3-x}}{4}\) | \(47\) |
norman | \(\frac {\left (\frac {1}{4}+\left ({\mathrm e}^{25}+16\right ) {\mathrm e}^{2 x +6}+\frac {x^{2} {\mathrm e}^{2 x +6}}{16}+\frac {{\mathrm e}^{3+x} x}{4}-4 \,{\mathrm e}^{3+x}\right ) {\mathrm e}^{-2 x -6}}{x}\) | \(48\) |
meijerg | \(-\frac {{\mathrm e}^{-2 x -12+2 x \,{\mathrm e}^{-6}} \left (\frac {{\mathrm e}^{6} \left (2-4 x \,{\mathrm e}^{-6}\right )}{4 x}-\frac {{\mathrm e}^{6-2 x \,{\mathrm e}^{-6}}}{2 x}+\ln \left (2 x \,{\mathrm e}^{-6}\right )+\expIntegralEi \left (1, 2 x \,{\mathrm e}^{-6}\right )+7-\ln \relax (x )-\ln \relax (2)-\frac {{\mathrm e}^{6}}{2 x}\right )}{2}-\frac {{\mathrm e}^{-2 x \,{\mathrm e}^{6}+2 x \,{\mathrm e}^{-6}-6} \left (1-{\mathrm e}^{2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )}\right )}{32 \left (1-{\mathrm e}^{-12}\right )}-\frac {{\mathrm e}^{3-2 x +2 x \,{\mathrm e}^{-6}} \left (1-{\mathrm e}^{-x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )}\right )}{4 \left (-{\mathrm e}^{6}+2\right )}+4 \,{\mathrm e}^{-2 x -3+2 x \,{\mathrm e}^{-6}} \left (-\ln \left (x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )\right )-\expIntegralEi \left (1, x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )\right )+\ln \relax (x )-6+\ln \left (-{\mathrm e}^{6}+2\right )\right )-\frac {{\mathrm e}^{-2 x -6+2 x \,{\mathrm e}^{-6}} \left (-\ln \left (2 x \,{\mathrm e}^{-6}\right )-\expIntegralEi \left (1, 2 x \,{\mathrm e}^{-6}\right )+\ln \relax (x )+\ln \relax (2)-6\right )}{2}+2 \,{\mathrm e}^{31-2 x \,{\mathrm e}^{6}+2 x \,{\mathrm e}^{-6}} \left (1-{\mathrm e}^{-12}\right ) \left (-\frac {{\mathrm e}^{-6} \left (2+4 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )\right )}{4 x \left (1-{\mathrm e}^{-12}\right )}+\frac {{\mathrm e}^{-6+2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )}}{2 x \left (1-{\mathrm e}^{-12}\right )}+\ln \left (-2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )\right )+\expIntegralEi \left (1, -2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )\right )-5-\ln \relax (x )-\ln \relax (2)-i \pi -\ln \left (1-{\mathrm e}^{-12}\right )+\frac {{\mathrm e}^{-6}}{2 x \left (1-{\mathrm e}^{-12}\right )}\right )+32 \,{\mathrm e}^{-2 x \,{\mathrm e}^{6}+6+2 x \,{\mathrm e}^{-6}} \left (1-{\mathrm e}^{-12}\right ) \left (-\frac {{\mathrm e}^{-6} \left (2+4 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )\right )}{4 x \left (1-{\mathrm e}^{-12}\right )}+\frac {{\mathrm e}^{-6+2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )}}{2 x \left (1-{\mathrm e}^{-12}\right )}+\ln \left (-2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )\right )+\expIntegralEi \left (1, -2 x \,{\mathrm e}^{6} \left (1-{\mathrm e}^{-12}\right )\right )-5-\ln \relax (x )-\ln \relax (2)-i \pi -\ln \left (1-{\mathrm e}^{-12}\right )+\frac {{\mathrm e}^{-6}}{2 x \left (1-{\mathrm e}^{-12}\right )}\right )+4 \,{\mathrm e}^{-2 x -9+2 x \,{\mathrm e}^{-6}} \left (-{\mathrm e}^{6}+2\right ) \left (\frac {{\mathrm e}^{6} \left (2-2 x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )\right )}{2 x \left (-{\mathrm e}^{6}+2\right )}-\frac {{\mathrm e}^{6-x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )}}{x \left (-{\mathrm e}^{6}+2\right )}+\ln \left (x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )\right )+\expIntegralEi \left (1, x \,{\mathrm e}^{-6} \left (-{\mathrm e}^{6}+2\right )\right )+7-\ln \relax (x )-\ln \left (-{\mathrm e}^{6}+2\right )-\frac {{\mathrm e}^{6}}{x \left (-{\mathrm e}^{6}+2\right )}\right )\) | \(640\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 55, normalized size = 1.96 \begin {gather*} 4 \, {\rm Ei}\left (-x\right ) e^{\left (-3\right )} - \frac {1}{2} \, {\rm Ei}\left (-2 \, x\right ) e^{\left (-6\right )} + \frac {1}{2} \, e^{\left (-6\right )} \Gamma \left (-1, 2 \, x\right ) - 4 \, e^{\left (-3\right )} \Gamma \left (-1, x\right ) + \frac {1}{16} \, x + \frac {e^{25}}{x} + \frac {16}{x} + \frac {1}{4} \, e^{\left (-x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.26, size = 38, normalized size = 1.36 \begin {gather*} \frac {x}{16}+\frac {{\mathrm {e}}^{-2\,x-6}}{4\,x}+\frac {{\mathrm {e}}^{25}+16}{x}+\frac {{\mathrm {e}}^{-x-3}\,\left (\frac {x}{4}-4\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 44, normalized size = 1.57 \begin {gather*} \frac {x}{16} + \frac {256 + 16 e^{25}}{16 x} + \frac {4 x e^{- 2 x - 6} + \left (4 x^{2} - 64 x\right ) e^{- x - 3}}{16 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________