Optimal. Leaf size=26 \[ \frac {e^{-\frac {5}{-2-x+x^2 (4+x)^2}} x}{\log (2)} \]
________________________________________________________________________________________
Rubi [F] time = 5.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \left (4-x+97 x^2+56 x^3+256 x^4+254 x^5+96 x^6+16 x^7+x^8\right )}{\left (4+4 x-63 x^2-64 x^3+236 x^4+254 x^5+96 x^6+16 x^7+x^8\right ) \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \left (4-x+97 x^2+56 x^3+256 x^4+254 x^5+96 x^6+16 x^7+x^8\right )}{4+4 x-63 x^2-64 x^3+236 x^4+254 x^5+96 x^6+16 x^7+x^8} \, dx}{\log (2)}\\ &=\frac {\int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \left (4-x+97 x^2+56 x^3+256 x^4+254 x^5+96 x^6+16 x^7+x^8\right )}{\left (2+x-16 x^2-8 x^3-x^4\right )^2} \, dx}{\log (2)}\\ &=\frac {\int \left (e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}-\frac {5 e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \left (-8-3 x+32 x^2+8 x^3\right )}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2}+\frac {20 e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}}{-2-x+16 x^2+8 x^3+x^4}\right ) \, dx}{\log (2)}\\ &=\frac {\int e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \, dx}{\log (2)}-\frac {5 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \left (-8-3 x+32 x^2+8 x^3\right )}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2} \, dx}{\log (2)}+\frac {20 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}}{-2-x+16 x^2+8 x^3+x^4} \, dx}{\log (2)}\\ &=\frac {\int e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \, dx}{\log (2)}-\frac {5 \int \left (-\frac {8 e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2}-\frac {3 e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2}+\frac {32 e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x^2}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2}+\frac {8 e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x^3}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2}\right ) \, dx}{\log (2)}+\frac {20 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}}{-2-x+16 x^2+8 x^3+x^4} \, dx}{\log (2)}\\ &=\frac {\int e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} \, dx}{\log (2)}+\frac {15 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2} \, dx}{\log (2)}+\frac {20 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}}{-2-x+16 x^2+8 x^3+x^4} \, dx}{\log (2)}+\frac {40 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}}}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2} \, dx}{\log (2)}-\frac {40 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x^3}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2} \, dx}{\log (2)}-\frac {160 \int \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x^2}{\left (-2-x+16 x^2+8 x^3+x^4\right )^2} \, dx}{\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 30, normalized size = 1.15 \begin {gather*} \frac {e^{-\frac {5}{-2-x+16 x^2+8 x^3+x^4}} x}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 29, normalized size = 1.12 \begin {gather*} \frac {x e^{\left (-\frac {5}{x^{4} + 8 \, x^{3} + 16 \, x^{2} - x - 2}\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 48, normalized size = 1.85 \begin {gather*} \frac {x e^{\left (-\frac {5 \, {\left (x^{4} + 8 \, x^{3} + 16 \, x^{2} - x\right )}}{2 \, {\left (x^{4} + 8 \, x^{3} + 16 \, x^{2} - x - 2\right )}} + \frac {5}{2}\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 30, normalized size = 1.15
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{-\frac {5}{x^{4}+8 x^{3}+16 x^{2}-x -2}}}{\ln \relax (2)}\) | \(30\) |
gosper | \(\frac {x \,{\mathrm e}^{-\frac {5}{x^{4}+8 x^{3}+16 x^{2}-x -2}}}{\ln \relax (2)}\) | \(32\) |
norman | \(\frac {\left (\frac {x^{5}}{\ln \relax (2)}-\frac {2 x}{\ln \relax (2)}-\frac {x^{2}}{\ln \relax (2)}+\frac {16 x^{3}}{\ln \relax (2)}+\frac {8 x^{4}}{\ln \relax (2)}\right ) {\mathrm e}^{-\frac {5}{x^{4}+8 x^{3}+16 x^{2}-x -2}}}{x^{4}+8 x^{3}+16 x^{2}-x -2}\) | \(90\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 29, normalized size = 1.12 \begin {gather*} \frac {x e^{\left (-\frac {5}{x^{4} + 8 \, x^{3} + 16 \, x^{2} - x - 2}\right )}}{\log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 29, normalized size = 1.12 \begin {gather*} \frac {x\,{\mathrm {e}}^{-\frac {5}{x^4+8\,x^3+16\,x^2-x-2}}}{\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.31, size = 24, normalized size = 0.92 \begin {gather*} \frac {x e^{- \frac {5}{x^{4} + 8 x^{3} + 16 x^{2} - x - 2}}}{\log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________