Optimal. Leaf size=29 \[ 4-\frac {x}{4+x^2}+\log \left (\frac {\log (2)}{-\frac {25}{3 x}+x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 23, normalized size of antiderivative = 0.79, number of steps used = 6, number of rules used = 4, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {2074, 199, 203, 260} \begin {gather*} -\log \left (25-3 x^3\right )-\frac {x}{x^2+4}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 199
Rule 203
Rule 260
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1}{x}-\frac {8}{\left (4+x^2\right )^2}+\frac {1}{4+x^2}-\frac {9 x^2}{-25+3 x^3}\right ) \, dx\\ &=\log (x)-8 \int \frac {1}{\left (4+x^2\right )^2} \, dx-9 \int \frac {x^2}{-25+3 x^3} \, dx+\int \frac {1}{4+x^2} \, dx\\ &=-\frac {x}{4+x^2}+\frac {1}{2} \tan ^{-1}\left (\frac {x}{2}\right )+\log (x)-\log \left (25-3 x^3\right )-\int \frac {1}{4+x^2} \, dx\\ &=-\frac {x}{4+x^2}+\log (x)-\log \left (25-3 x^3\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 23, normalized size = 0.79 \begin {gather*} -\frac {x}{4+x^2}+\log (x)-\log \left (25-3 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 34, normalized size = 1.17 \begin {gather*} -\frac {{\left (x^{2} + 4\right )} \log \left (3 \, x^{3} - 25\right ) - {\left (x^{2} + 4\right )} \log \relax (x) + x}{x^{2} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 25, normalized size = 0.86 \begin {gather*} -\frac {x}{x^{2} + 4} - \log \left ({\left | 3 \, x^{3} - 25 \right |}\right ) + \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.83
method | result | size |
default | \(-\frac {x}{x^{2}+4}-\ln \left (3 x^{3}-25\right )+\ln \relax (x )\) | \(24\) |
norman | \(-\frac {x}{x^{2}+4}-\ln \left (3 x^{3}-25\right )+\ln \relax (x )\) | \(24\) |
risch | \(-\frac {x}{x^{2}+4}-\ln \left (3 x^{3}-25\right )+\ln \relax (x )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 23, normalized size = 0.79 \begin {gather*} -\frac {x}{x^{2} + 4} - \log \left (3 \, x^{3} - 25\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 21, normalized size = 0.72 \begin {gather*} \ln \relax (x)-\ln \left (x^3-\frac {25}{3}\right )-\frac {x}{x^2+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 17, normalized size = 0.59 \begin {gather*} - \frac {x}{x^{2} + 4} + \log {\relax (x )} - \log {\left (3 x^{3} - 25 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________