Optimal. Leaf size=34 \[ -2+x+\left (5-e^x\right ) \left (\frac {e^{3-e^x}}{x (-5+9 x)}+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 22.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {125 x-425 x^2+315 x^3+81 x^4+e^x \left (-25 x+90 x^2-81 x^3\right )+e^{3-e^x} \left (25-90 x+e^x \left (-5+48 x-54 x^2\right )+e^{2 x} \left (-5 x+9 x^2\right )\right )+e^x \left (-25 x^2+90 x^3-81 x^4\right ) \log (x)}{25 x^2-90 x^3+81 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {125 x-425 x^2+315 x^3+81 x^4+e^x \left (-25 x+90 x^2-81 x^3\right )+e^{3-e^x} \left (25-90 x+e^x \left (-5+48 x-54 x^2\right )+e^{2 x} \left (-5 x+9 x^2\right )\right )+e^x \left (-25 x^2+90 x^3-81 x^4\right ) \log (x)}{x^2 \left (25-90 x+81 x^2\right )} \, dx\\ &=\int \frac {125 x-425 x^2+315 x^3+81 x^4+e^x \left (-25 x+90 x^2-81 x^3\right )+e^{3-e^x} \left (25-90 x+e^x \left (-5+48 x-54 x^2\right )+e^{2 x} \left (-5 x+9 x^2\right )\right )+e^x \left (-25 x^2+90 x^3-81 x^4\right ) \log (x)}{x^2 (-5+9 x)^2} \, dx\\ &=\int \left (-\frac {425}{(-5+9 x)^2}+\frac {25 e^{3-e^x}}{x^2 (-5+9 x)^2}+\frac {125}{x (-5+9 x)^2}-\frac {90 e^{3-e^x}}{x (-5+9 x)^2}+\frac {315 x}{(-5+9 x)^2}+\frac {81 x^2}{(-5+9 x)^2}+\frac {e^{3-e^x+2 x}}{x (-5+9 x)}-\frac {e^{-e^x+x} \left (5 e^3-48 e^3 x+25 e^{e^x} x+54 e^3 x^2-90 e^{e^x} x^2+81 e^{e^x} x^3+25 e^{e^x} x^2 \log (x)-90 e^{e^x} x^3 \log (x)+81 e^{e^x} x^4 \log (x)\right )}{x^2 (-5+9 x)^2}\right ) \, dx\\ &=-\frac {425}{9 (5-9 x)}+25 \int \frac {e^{3-e^x}}{x^2 (-5+9 x)^2} \, dx+81 \int \frac {x^2}{(-5+9 x)^2} \, dx-90 \int \frac {e^{3-e^x}}{x (-5+9 x)^2} \, dx+125 \int \frac {1}{x (-5+9 x)^2} \, dx+315 \int \frac {x}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x+2 x}}{x (-5+9 x)} \, dx-\int \frac {e^{-e^x+x} \left (5 e^3-48 e^3 x+25 e^{e^x} x+54 e^3 x^2-90 e^{e^x} x^2+81 e^{e^x} x^3+25 e^{e^x} x^2 \log (x)-90 e^{e^x} x^3 \log (x)+81 e^{e^x} x^4 \log (x)\right )}{x^2 (-5+9 x)^2} \, dx\\ &=-\frac {425}{9 (5-9 x)}+25 \int \left (\frac {e^{3-e^x}}{25 x^2}+\frac {18 e^{3-e^x}}{125 x}+\frac {81 e^{3-e^x}}{25 (-5+9 x)^2}-\frac {162 e^{3-e^x}}{125 (-5+9 x)}\right ) \, dx+81 \int \left (\frac {1}{81}+\frac {25}{81 (-5+9 x)^2}+\frac {10}{81 (-5+9 x)}\right ) \, dx-90 \int \left (\frac {e^{3-e^x}}{25 x}+\frac {9 e^{3-e^x}}{5 (-5+9 x)^2}-\frac {9 e^{3-e^x}}{25 (-5+9 x)}\right ) \, dx+125 \int \left (\frac {1}{25 x}+\frac {9}{5 (-5+9 x)^2}-\frac {9}{25 (-5+9 x)}\right ) \, dx+315 \int \left (\frac {5}{9 (-5+9 x)^2}+\frac {1}{9 (-5+9 x)}\right ) \, dx+\int \left (-\frac {e^{3-e^x+2 x}}{5 x}+\frac {9 e^{3-e^x+2 x}}{5 (-5+9 x)}\right ) \, dx-\int e^x \left (\frac {x+\frac {e^{3-e^x} \left (5-48 x+54 x^2\right )}{(5-9 x)^2}}{x^2}+\log (x)\right ) \, dx\\ &=x+5 \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx-\int \left (\frac {e^{-e^x+x} \left (5 e^3-48 e^3 x+25 e^{e^x} x+54 e^3 x^2-90 e^{e^x} x^2+81 e^{e^x} x^3\right )}{x^2 (-5+9 x)^2}+e^x \log (x)\right ) \, dx\\ &=x+5 \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx-\int \frac {e^{-e^x+x} \left (5 e^3-48 e^3 x+25 e^{e^x} x+54 e^3 x^2-90 e^{e^x} x^2+81 e^{e^x} x^3\right )}{x^2 (-5+9 x)^2} \, dx-\int e^x \log (x) \, dx\\ &=x+5 \log (x)-e^x \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx+\int \frac {e^x}{x} \, dx-\int \frac {e^x \left (x+\frac {e^{3-e^x} \left (5-48 x+54 x^2\right )}{(5-9 x)^2}\right )}{x^2} \, dx\\ &=x+\text {Ei}(x)+5 \log (x)-e^x \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx-\int \left (\frac {e^x}{x}+\frac {e^{3-e^x+x} \left (5-48 x+54 x^2\right )}{x^2 (-5+9 x)^2}\right ) \, dx\\ &=x+\text {Ei}(x)+5 \log (x)-e^x \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx-\int \frac {e^x}{x} \, dx-\int \frac {e^{3-e^x+x} \left (5-48 x+54 x^2\right )}{x^2 (-5+9 x)^2} \, dx\\ &=x+5 \log (x)-e^x \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx-\int \left (\frac {e^{3-e^x+x}}{5 x^2}-\frac {6 e^{3-e^x+x}}{5 x}-\frac {81 e^{3-e^x+x}}{5 (-5+9 x)^2}+\frac {54 e^{3-e^x+x}}{5 (-5+9 x)}\right ) \, dx\\ &=x+5 \log (x)-e^x \log (x)-\frac {1}{5} \int \frac {e^{3-e^x+x}}{x^2} \, dx-\frac {1}{5} \int \frac {e^{3-e^x+2 x}}{x} \, dx+\frac {6}{5} \int \frac {e^{3-e^x+x}}{x} \, dx+\frac {9}{5} \int \frac {e^{3-e^x+2 x}}{-5+9 x} \, dx-\frac {54}{5} \int \frac {e^{3-e^x+x}}{-5+9 x} \, dx+\frac {81}{5} \int \frac {e^{3-e^x+x}}{(-5+9 x)^2} \, dx+81 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx-162 \int \frac {e^{3-e^x}}{(-5+9 x)^2} \, dx+\int \frac {e^{3-e^x}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 39, normalized size = 1.15 \begin {gather*} x-\frac {e^{3-e^x} \left (-5+e^x\right )}{x (-5+9 x)}+5 \log (x)-e^x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 61, normalized size = 1.79 \begin {gather*} \frac {9 \, x^{3} - 5 \, x^{2} - {\left (e^{x} - 5\right )} e^{\left (-e^{x} + 3\right )} + {\left (45 \, x^{2} - {\left (9 \, x^{2} - 5 \, x\right )} e^{x} - 25 \, x\right )} \log \relax (x)}{9 \, x^{2} - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {81 \, x^{4} + 315 \, x^{3} - {\left (81 \, x^{4} - 90 \, x^{3} + 25 \, x^{2}\right )} e^{x} \log \relax (x) - 425 \, x^{2} - {\left (81 \, x^{3} - 90 \, x^{2} + 25 \, x\right )} e^{x} + {\left ({\left (9 \, x^{2} - 5 \, x\right )} e^{\left (2 \, x\right )} - {\left (54 \, x^{2} - 48 \, x + 5\right )} e^{x} - 90 \, x + 25\right )} e^{\left (-e^{x} + 3\right )} + 125 \, x}{81 \, x^{4} - 90 \, x^{3} + 25 \, x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 36, normalized size = 1.06
method | result | size |
risch | \(-{\mathrm e}^{x} \ln \relax (x )+x +5 \ln \relax (x )-\frac {\left ({\mathrm e}^{x}-5\right ) {\mathrm e}^{-{\mathrm e}^{x}+3}}{x \left (9 x -5\right )}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 52, normalized size = 1.53 \begin {gather*} x - \frac {{\left (9 \, x^{2} - 5 \, x\right )} e^{x} \log \relax (x) - {\left (5 \, e^{3} - e^{\left (x + 3\right )}\right )} e^{\left (-e^{x}\right )}}{9 \, x^{2} - 5 \, x} + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.80, size = 45, normalized size = 1.32 \begin {gather*} x+5\,\ln \left (x-\frac {5}{9}\right )+10\,\mathrm {atanh}\left (\frac {18\,x}{5}-1\right )-{\mathrm {e}}^x\,\ln \relax (x)-\frac {{\mathrm {e}}^{3-{\mathrm {e}}^x}\,\left ({\mathrm {e}}^x-5\right )}{x\,\left (9\,x-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 32, normalized size = 0.94 \begin {gather*} x + \frac {\left (5 - e^{x}\right ) e^{3 - e^{x}}}{9 x^{2} - 5 x} - e^{x} \log {\relax (x )} + 5 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________