Optimal. Leaf size=31 \[ \frac {4 \log ^2(x)}{\left (\frac {3}{x (4+4 x)}-\log \left (\left (2+e^5\right ) x\right )\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 18.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-384 x-768 x^2-384 x^3\right ) \log (x)+\left (-384 x-1664 x^2-2304 x^3-1536 x^4-512 x^5\right ) \log ^2(x)+\left (512 x^2+1536 x^3+1536 x^4+512 x^5\right ) \log (x) \log \left (2 x+e^5 x\right )}{-27+\left (108 x+108 x^2\right ) \log \left (2 x+e^5 x\right )+\left (-144 x^2-288 x^3-144 x^4\right ) \log ^2\left (2 x+e^5 x\right )+\left (64 x^3+192 x^4+192 x^5+64 x^6\right ) \log ^3\left (2 x+e^5 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {128 x (1+x) \log (x) \left (-\left ((1+x) \left (-3+4 x \log \left (2+e^5\right )+4 x^2 \log \left (2+e^5\right )\right )\right )+3 (1+2 x) \log (x)\right )}{\left (3-4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\\ &=128 \int \frac {x (1+x) \log (x) \left (-\left ((1+x) \left (-3+4 x \log \left (2+e^5\right )+4 x^2 \log \left (2+e^5\right )\right )\right )+3 (1+2 x) \log (x)\right )}{\left (3-4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\\ &=128 \int \left (\frac {x \log (x) \left (3+3 x \left (1-\frac {4}{3} \log \left (2+e^5\right )\right )-8 x^2 \log \left (2+e^5\right )-4 x^3 \log \left (2+e^5\right )+3 \log (x)+6 x \log (x)\right )}{\left (3-4 x \log \left (\left (2+e^5\right ) x\right )-4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}+\frac {x^2 \log (x) \left (3+3 x \left (1-\frac {4}{3} \log \left (2+e^5\right )\right )-8 x^2 \log \left (2+e^5\right )-4 x^3 \log \left (2+e^5\right )+3 \log (x)+6 x \log (x)\right )}{\left (3-4 x \log \left (\left (2+e^5\right ) x\right )-4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}\right ) \, dx\\ &=128 \int \frac {x \log (x) \left (3+3 x \left (1-\frac {4}{3} \log \left (2+e^5\right )\right )-8 x^2 \log \left (2+e^5\right )-4 x^3 \log \left (2+e^5\right )+3 \log (x)+6 x \log (x)\right )}{\left (3-4 x \log \left (\left (2+e^5\right ) x\right )-4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+128 \int \frac {x^2 \log (x) \left (3+3 x \left (1-\frac {4}{3} \log \left (2+e^5\right )\right )-8 x^2 \log \left (2+e^5\right )-4 x^3 \log \left (2+e^5\right )+3 \log (x)+6 x \log (x)\right )}{\left (3-4 x \log \left (\left (2+e^5\right ) x\right )-4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\\ &=128 \int \frac {x \log (x) \left (-\left ((1+x) \left (-3+4 x \log \left (2+e^5\right )+4 x^2 \log \left (2+e^5\right )\right )\right )+3 (1+2 x) \log (x)\right )}{\left (3-4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+128 \int \frac {x^2 \log (x) \left (-\left ((1+x) \left (-3+4 x \log \left (2+e^5\right )+4 x^2 \log \left (2+e^5\right )\right )\right )+3 (1+2 x) \log (x)\right )}{\left (3-4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\\ &=128 \int \left (-\frac {3 x \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}-\frac {3 x^2 \left (1-\frac {4}{3} \log \left (2+e^5\right )\right ) \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}+\frac {8 x^3 \log \left (2+e^5\right ) \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}+\frac {4 x^4 \log \left (2+e^5\right ) \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}-\frac {3 x \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}-\frac {6 x^2 \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}\right ) \, dx+128 \int \left (-\frac {3 x^2 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}-\frac {3 x^3 \left (1-\frac {4}{3} \log \left (2+e^5\right )\right ) \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}+\frac {8 x^4 \log \left (2+e^5\right ) \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}+\frac {4 x^5 \log \left (2+e^5\right ) \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}-\frac {3 x^2 \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}-\frac {6 x^3 \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3}\right ) \, dx\\ &=-\left (384 \int \frac {x \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\right )-384 \int \frac {x^2 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-384 \int \frac {x \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-384 \int \frac {x^2 \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-768 \int \frac {x^2 \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-768 \int \frac {x^3 \log ^2(x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-\left (128 \left (3-4 \log \left (2+e^5\right )\right )\right ) \int \frac {x^2 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-\left (128 \left (3-4 \log \left (2+e^5\right )\right )\right ) \int \frac {x^3 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (512 \log \left (2+e^5\right )\right ) \int \frac {x^4 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (512 \log \left (2+e^5\right )\right ) \int \frac {x^5 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (1024 \log \left (2+e^5\right )\right ) \int \frac {x^3 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (1024 \log \left (2+e^5\right )\right ) \int \frac {x^4 \log (x)}{\left (-3+4 x \log \left (\left (2+e^5\right ) x\right )+4 x^2 \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\\ &=-\left (384 \int \frac {x \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\right )-384 \int \frac {x^2 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-384 \int \frac {x \log ^2(x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-384 \int \frac {x^2 \log ^2(x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-768 \int \frac {x^2 \log ^2(x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-768 \int \frac {x^3 \log ^2(x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-\left (128 \left (3-4 \log \left (2+e^5\right )\right )\right ) \int \frac {x^2 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx-\left (128 \left (3-4 \log \left (2+e^5\right )\right )\right ) \int \frac {x^3 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (512 \log \left (2+e^5\right )\right ) \int \frac {x^4 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (512 \log \left (2+e^5\right )\right ) \int \frac {x^5 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (1024 \log \left (2+e^5\right )\right ) \int \frac {x^3 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx+\left (1024 \log \left (2+e^5\right )\right ) \int \frac {x^4 \log (x)}{\left (-3+4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.07, size = 72, normalized size = 2.32 \begin {gather*} -\frac {4 \left (-3+4 x \log \left (2+e^5\right )+4 x^2 \log \left (2+e^5\right )\right ) \left (-3+4 x \log \left (2+e^5\right )+4 x^2 \log \left (2+e^5\right )+8 x (1+x) \log (x)\right )}{\left (3-4 x (1+x) \log \left (\left (2+e^5\right ) x\right )\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 150, normalized size = 4.84 \begin {gather*} -\frac {4 \, {\left (16 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \left (e^{5} + 2\right )^{2} - 24 \, {\left (x^{2} + x\right )} \log \relax (x) - 8 \, {\left (3 \, x^{2} - 4 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (x) + 3 \, x\right )} \log \left (e^{5} + 2\right ) + 9\right )}}{16 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (x)^{2} + 16 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \left (e^{5} + 2\right )^{2} - 24 \, {\left (x^{2} + x\right )} \log \relax (x) - 8 \, {\left (3 \, x^{2} - 4 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (x) + 3 \, x\right )} \log \left (e^{5} + 2\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 239, normalized size = 7.71 \begin {gather*} -\frac {4 \, {\left (32 \, x^{4} \log \relax (x) \log \left (e^{5} + 2\right ) + 16 \, x^{4} \log \left (e^{5} + 2\right )^{2} + 64 \, x^{3} \log \relax (x) \log \left (e^{5} + 2\right ) + 32 \, x^{3} \log \left (e^{5} + 2\right )^{2} + 32 \, x^{2} \log \relax (x) \log \left (e^{5} + 2\right ) + 16 \, x^{2} \log \left (e^{5} + 2\right )^{2} - 24 \, x^{2} \log \relax (x) - 24 \, x^{2} \log \left (e^{5} + 2\right ) - 24 \, x \log \relax (x) - 24 \, x \log \left (e^{5} + 2\right ) + 9\right )}}{16 \, x^{4} \log \relax (x)^{2} + 32 \, x^{4} \log \relax (x) \log \left (e^{5} + 2\right ) + 16 \, x^{4} \log \left (e^{5} + 2\right )^{2} + 32 \, x^{3} \log \relax (x)^{2} + 64 \, x^{3} \log \relax (x) \log \left (e^{5} + 2\right ) + 32 \, x^{3} \log \left (e^{5} + 2\right )^{2} + 16 \, x^{2} \log \relax (x)^{2} + 32 \, x^{2} \log \relax (x) \log \left (e^{5} + 2\right ) + 16 \, x^{2} \log \left (e^{5} + 2\right )^{2} - 24 \, x^{2} \log \relax (x) - 24 \, x^{2} \log \left (e^{5} + 2\right ) - 24 \, x \log \relax (x) - 24 \, x \log \left (e^{5} + 2\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 33, normalized size = 1.06
method | result | size |
risch | \(\frac {96 x^{2} \ln \relax (x )+96 x \ln \relax (x )-36}{\left (4 x^{2} \ln \relax (x )+4 x \ln \relax (x )-3\right )^{2}}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 216, normalized size = 6.97 \begin {gather*} -\frac {4 \, {\left (16 \, x^{4} \log \left (e^{5} + 2\right )^{2} + 32 \, x^{3} \log \left (e^{5} + 2\right )^{2} + 8 \, {\left (2 \, \log \left (e^{5} + 2\right )^{2} - 3 \, \log \left (e^{5} + 2\right )\right )} x^{2} + 8 \, {\left (4 \, x^{4} \log \left (e^{5} + 2\right ) + 8 \, x^{3} \log \left (e^{5} + 2\right ) + x^{2} {\left (4 \, \log \left (e^{5} + 2\right ) - 3\right )} - 3 \, x\right )} \log \relax (x) - 24 \, x \log \left (e^{5} + 2\right ) + 9\right )}}{16 \, x^{4} \log \left (e^{5} + 2\right )^{2} + 32 \, x^{3} \log \left (e^{5} + 2\right )^{2} + 8 \, {\left (2 \, \log \left (e^{5} + 2\right )^{2} - 3 \, \log \left (e^{5} + 2\right )\right )} x^{2} + 16 \, {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (x)^{2} + 8 \, {\left (4 \, x^{4} \log \left (e^{5} + 2\right ) + 8 \, x^{3} \log \left (e^{5} + 2\right ) + x^{2} {\left (4 \, \log \left (e^{5} + 2\right ) - 3\right )} - 3 \, x\right )} \log \relax (x) - 24 \, x \log \left (e^{5} + 2\right ) + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\ln \relax (x)}^2\,\left (512\,x^5+1536\,x^4+2304\,x^3+1664\,x^2+384\,x\right )+\ln \relax (x)\,\left (384\,x^3+768\,x^2+384\,x\right )-\ln \left (2\,x+x\,{\mathrm {e}}^5\right )\,\ln \relax (x)\,\left (512\,x^5+1536\,x^4+1536\,x^3+512\,x^2\right )}{\left (-64\,x^6-192\,x^5-192\,x^4-64\,x^3\right )\,{\ln \left (2\,x+x\,{\mathrm {e}}^5\right )}^3+\left (144\,x^4+288\,x^3+144\,x^2\right )\,{\ln \left (2\,x+x\,{\mathrm {e}}^5\right )}^2+\left (-108\,x^2-108\,x\right )\,\ln \left (2\,x+x\,{\mathrm {e}}^5\right )+27} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.93, size = 243, normalized size = 7.84 \begin {gather*} \frac {- 64 x^{4} \log {\left (2 + e^{5} \right )}^{2} - 128 x^{3} \log {\left (2 + e^{5} \right )}^{2} - 64 x^{2} \log {\left (2 + e^{5} \right )}^{2} + 96 x^{2} \log {\left (2 + e^{5} \right )} + 96 x \log {\left (2 + e^{5} \right )} + \left (- 128 x^{4} \log {\left (2 + e^{5} \right )} - 256 x^{3} \log {\left (2 + e^{5} \right )} - 128 x^{2} \log {\left (2 + e^{5} \right )} + 96 x^{2} + 96 x\right ) \log {\relax (x )} - 36}{16 x^{4} \log {\left (2 + e^{5} \right )}^{2} + 32 x^{3} \log {\left (2 + e^{5} \right )}^{2} - 24 x^{2} \log {\left (2 + e^{5} \right )} + 16 x^{2} \log {\left (2 + e^{5} \right )}^{2} - 24 x \log {\left (2 + e^{5} \right )} + \left (16 x^{4} + 32 x^{3} + 16 x^{2}\right ) \log {\relax (x )}^{2} + \left (32 x^{4} \log {\left (2 + e^{5} \right )} + 64 x^{3} \log {\left (2 + e^{5} \right )} - 24 x^{2} + 32 x^{2} \log {\left (2 + e^{5} \right )} - 24 x\right ) \log {\relax (x )} + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________