Optimal. Leaf size=25 \[ e^{\frac {x}{\frac {5}{2}+x-\frac {e^4 x (4+x)}{\log (\log (6))}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 31, normalized size of antiderivative = 1.24, number of steps used = 1, number of rules used = 1, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {6706} \begin {gather*} \log ^{-\frac {2 x}{2 e^4 \left (x^2+4 x\right )-(2 x+5) \log (\log (6))}}(6) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log ^{-\frac {2 x}{2 e^4 \left (4 x+x^2\right )-(5+2 x) \log (\log (6))}}(6)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.16, size = 28, normalized size = 1.12 \begin {gather*} \log ^{-\frac {2 x}{2 e^4 x (4+x)-(5+2 x) \log (\log (6))}}(6) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 30, normalized size = 1.20 \begin {gather*} \log \relax (6)^{-\frac {2 \, x}{2 \, {\left (x^{2} + 4 \, x\right )} e^{4} - {\left (2 \, x + 5\right )} \log \left (\log \relax (6)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {2 \, {\left (2 \, x^{2} e^{4} \log \left (\log \relax (6)\right ) + 5 \, \log \left (\log \relax (6)\right )^{2}\right )} \log \relax (6)^{-\frac {2 \, x}{2 \, {\left (x^{2} + 4 \, x\right )} e^{4} - {\left (2 \, x + 5\right )} \log \left (\log \relax (6)\right )}}}{4 \, {\left (2 \, x^{3} + 13 \, x^{2} + 20 \, x\right )} e^{4} \log \left (\log \relax (6)\right ) - {\left (4 \, x^{2} + 20 \, x + 25\right )} \log \left (\log \relax (6)\right )^{2} - 4 \, {\left (x^{4} + 8 \, x^{3} + 16 \, x^{2}\right )} e^{8}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 34, normalized size = 1.36
method | result | size |
gosper | \({\mathrm e}^{-\frac {2 \ln \left (\ln \relax (6)\right ) x}{2 x^{2} {\mathrm e}^{4}+8 x \,{\mathrm e}^{4}-2 \ln \left (\ln \relax (6)\right ) x -5 \ln \left (\ln \relax (6)\right )}}\) | \(34\) |
risch | \(\left (\ln \relax (2)+\ln \relax (3)\right )^{\frac {2 x}{-2 x^{2} {\mathrm e}^{4}+2 \ln \left (\ln \relax (2)+\ln \relax (3)\right ) x -8 x \,{\mathrm e}^{4}+5 \ln \left (\ln \relax (2)+\ln \relax (3)\right )}}\) | \(42\) |
norman | \(\frac {\left (8 \,{\mathrm e}^{4}-2 \ln \left (\ln \relax (6)\right )\right ) x \,{\mathrm e}^{\frac {2 x \ln \left (\ln \relax (6)\right )}{\left (5+2 x \right ) \ln \left (\ln \relax (6)\right )+\left (-2 x^{2}-8 x \right ) {\mathrm e}^{4}}}-5 \ln \left (\ln \relax (6)\right ) {\mathrm e}^{\frac {2 x \ln \left (\ln \relax (6)\right )}{\left (5+2 x \right ) \ln \left (\ln \relax (6)\right )+\left (-2 x^{2}-8 x \right ) {\mathrm e}^{4}}}+2 x^{2} {\mathrm e}^{4} {\mathrm e}^{\frac {2 x \ln \left (\ln \relax (6)\right )}{\left (5+2 x \right ) \ln \left (\ln \relax (6)\right )+\left (-2 x^{2}-8 x \right ) {\mathrm e}^{4}}}}{2 x^{2} {\mathrm e}^{4}+8 x \,{\mathrm e}^{4}-2 \ln \left (\ln \relax (6)\right ) x -5 \ln \left (\ln \relax (6)\right )}\) | \(146\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 45, normalized size = 1.80 \begin {gather*} \frac {1}{{\left (\log \relax (3) + \log \relax (2)\right )}^{\frac {2 \, x}{2 \, x^{2} e^{4} + 2 \, x {\left (4 \, e^{4} - \log \left (\log \relax (3) + \log \relax (2)\right )\right )} - 5 \, \log \left (\log \relax (3) + \log \relax (2)\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.73, size = 33, normalized size = 1.32 \begin {gather*} {\mathrm {e}}^{\frac {2\,x\,\ln \left (\ln \relax (6)\right )}{5\,\ln \left (\ln \relax (6)\right )-8\,x\,{\mathrm {e}}^4-2\,x^2\,{\mathrm {e}}^4+2\,x\,\ln \left (\ln \relax (6)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.97, size = 32, normalized size = 1.28 \begin {gather*} e^{\frac {2 x \log {\left (\log {\relax (6 )} \right )}}{\left (2 x + 5\right ) \log {\left (\log {\relax (6 )} \right )} + \left (- 2 x^{2} - 8 x\right ) e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________