Optimal. Leaf size=15 \[ \frac {2 e^{8+x} \log ^2(\log (4))}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 15, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {12, 2197} \begin {gather*} \frac {2 e^{x+8} \log ^2(\log (4))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log ^2(\log (4)) \int \frac {e^{8+x} (-2+2 x)}{x^2} \, dx\\ &=\frac {2 e^{8+x} \log ^2(\log (4))}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 1.00 \begin {gather*} \frac {2 e^{8+x} \log ^2(\log (4))}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 16, normalized size = 1.07 \begin {gather*} \frac {2 \, e^{\left (x + 8\right )} \log \left (2 \, \log \relax (2)\right )^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 16, normalized size = 1.07 \begin {gather*} \frac {2 \, e^{\left (x + 8\right )} \log \left (2 \, \log \relax (2)\right )^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 17, normalized size = 1.13
method | result | size |
gosper | \(\frac {2 \,{\mathrm e}^{x +8} \ln \left (2 \ln \relax (2)\right )^{2}}{x}\) | \(17\) |
derivativedivides | \(\frac {2 \,{\mathrm e}^{x +8} \ln \left (2 \ln \relax (2)\right )^{2}}{x}\) | \(17\) |
default | \(\frac {2 \,{\mathrm e}^{x +8} \ln \left (2 \ln \relax (2)\right )^{2}}{x}\) | \(17\) |
risch | \(\frac {2 \left (\ln \relax (2)+\ln \left (\ln \relax (2)\right )\right )^{2} {\mathrm e}^{x +8}}{x}\) | \(18\) |
norman | \(\frac {\left (2 \ln \relax (2)^{2}+4 \ln \relax (2) \ln \left (\ln \relax (2)\right )+2 \ln \left (\ln \relax (2)\right )^{2}\right ) {\mathrm e}^{x +8}}{x}\) | \(30\) |
meijerg | \(2 \,{\mathrm e}^{8} \ln \left (2 \ln \relax (2)\right )^{2} \left (-\ln \left (-x \right )-\expIntegralEi \left (1, -x \right )+\ln \relax (x )+i \pi \right )+2 \,{\mathrm e}^{8} \ln \left (2 \ln \relax (2)\right )^{2} \left (-\frac {2 x +2}{2 x}+\frac {{\mathrm e}^{x}}{x}+\ln \left (-x \right )+\expIntegralEi \left (1, -x \right )+1-\ln \relax (x )-i \pi +\frac {1}{x}\right )\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.43, size = 24, normalized size = 1.60 \begin {gather*} 2 \, {\left ({\rm Ei}\relax (x) e^{8} - e^{8} \Gamma \left (-1, -x\right )\right )} \log \left (2 \, \log \relax (2)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 14, normalized size = 0.93 \begin {gather*} \frac {2\,{\mathrm {e}}^8\,{\mathrm {e}}^x\,{\ln \left (\ln \relax (4)\right )}^2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.13, size = 31, normalized size = 2.07 \begin {gather*} \frac {\left (4 \log {\relax (2 )} \log {\left (\log {\relax (2 )} \right )} + 2 \log {\left (\log {\relax (2 )} \right )}^{2} + 2 \log {\relax (2 )}^{2}\right ) e^{x + 8}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________