Optimal. Leaf size=19 \[ e^{2 x} \left (-5+e^5\right ) (-5+x \log (x))^2 \]
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (e^{2 x} \left (-200+40 e^5\right )+e^{2 x} \left (50+e^5 (-10-18 x)+90 x\right ) \log (x)+e^{2 x} \left (-10 x-10 x^2+e^5 \left (2 x+2 x^2\right )\right ) \log ^2(x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (40 \left (5-e^5\right )\right ) \int e^{2 x} \, dx\right )+\int e^{2 x} \left (50+e^5 (-10-18 x)+90 x\right ) \log (x) \, dx+\int e^{2 x} \left (-10 x-10 x^2+e^5 \left (2 x+2 x^2\right )\right ) \log ^2(x) \, dx\\ &=-20 e^{2 x} \left (5-e^5\right )-\frac {9}{2} e^{2 x} \left (5-e^5\right ) \log (x)+e^{2 x} \left (5 \left (5-e^5\right )+9 \left (5-e^5\right ) x\right ) \log (x)-\int \frac {e^{2 x} \left (5-e^5\right ) (1+18 x)}{2 x} \, dx+\int 2 e^{2 x} \left (5-e^5\right ) (-1-x) x \log ^2(x) \, dx\\ &=-20 e^{2 x} \left (5-e^5\right )-\frac {9}{2} e^{2 x} \left (5-e^5\right ) \log (x)+e^{2 x} \left (5 \left (5-e^5\right )+9 \left (5-e^5\right ) x\right ) \log (x)-\frac {1}{2} \left (5-e^5\right ) \int \frac {e^{2 x} (1+18 x)}{x} \, dx+\left (2 \left (5-e^5\right )\right ) \int e^{2 x} (-1-x) x \log ^2(x) \, dx\\ &=-20 e^{2 x} \left (5-e^5\right )-\frac {9}{2} e^{2 x} \left (5-e^5\right ) \log (x)+e^{2 x} \left (5 \left (5-e^5\right )+9 \left (5-e^5\right ) x\right ) \log (x)-\frac {1}{2} \left (5-e^5\right ) \int \left (18 e^{2 x}+\frac {e^{2 x}}{x}\right ) \, dx+\left (2 \left (5-e^5\right )\right ) \int \left (-e^{2 x} x \log ^2(x)-e^{2 x} x^2 \log ^2(x)\right ) \, dx\\ &=-20 e^{2 x} \left (5-e^5\right )-\frac {9}{2} e^{2 x} \left (5-e^5\right ) \log (x)+e^{2 x} \left (5 \left (5-e^5\right )+9 \left (5-e^5\right ) x\right ) \log (x)-\frac {1}{2} \left (5-e^5\right ) \int \frac {e^{2 x}}{x} \, dx-\left (2 \left (5-e^5\right )\right ) \int e^{2 x} x \log ^2(x) \, dx-\left (2 \left (5-e^5\right )\right ) \int e^{2 x} x^2 \log ^2(x) \, dx-\left (9 \left (5-e^5\right )\right ) \int e^{2 x} \, dx\\ &=-\frac {49}{2} e^{2 x} \left (5-e^5\right )-\frac {1}{2} \left (5-e^5\right ) \text {Ei}(2 x)-\frac {9}{2} e^{2 x} \left (5-e^5\right ) \log (x)+e^{2 x} \left (5 \left (5-e^5\right )+9 \left (5-e^5\right ) x\right ) \log (x)-\left (2 \left (5-e^5\right )\right ) \int e^{2 x} x \log ^2(x) \, dx-\left (2 \left (5-e^5\right )\right ) \int e^{2 x} x^2 \log ^2(x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 1.00 \begin {gather*} e^{2 x} \left (-5+e^5\right ) (-5+x \log (x))^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 48, normalized size = 2.53 \begin {gather*} {\left (x^{2} e^{5} - 5 \, x^{2}\right )} e^{\left (2 \, x\right )} \log \relax (x)^{2} - 10 \, {\left (x e^{5} - 5 \, x\right )} e^{\left (2 \, x\right )} \log \relax (x) + 25 \, {\left (e^{5} - 5\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 109, normalized size = 5.74 \begin {gather*} \frac {5}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} \log \relax (x) - \frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x + 5\right )} \log \relax (x) - {\left (5 \, x^{2} e^{\left (2 \, x\right )} - x^{2} e^{\left (2 \, x + 5\right )}\right )} \log \relax (x)^{2} + 20 \, {\left (e^{5} - 5\right )} e^{\left (2 \, x\right )} + \frac {1}{2} \, {\left (5 \, {\left (18 \, x + 1\right )} e^{\left (2 \, x\right )} - {\left (18 \, x + 1\right )} e^{\left (2 \, x + 5\right )}\right )} \log \relax (x) - 25 \, e^{\left (2 \, x\right )} + 5 \, e^{\left (2 \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 63, normalized size = 3.32
method | result | size |
risch | \(x^{2} \ln \relax (x )^{2} {\mathrm e}^{5+2 x}-5 \ln \relax (x )^{2} {\mathrm e}^{2 x} x^{2}-10 x \ln \relax (x ) {\mathrm e}^{5+2 x}+50 \ln \relax (x ) {\mathrm e}^{2 x} x +25 \,{\mathrm e}^{5+2 x}-125 \,{\mathrm e}^{2 x}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.83, size = 43, normalized size = 2.26 \begin {gather*} {\left (x^{2} {\left (e^{5} - 5\right )} \log \relax (x)^{2} - 10 \, x {\left (e^{5} - 5\right )} \log \relax (x) + 5 \, e^{5} - 25\right )} e^{\left (2 \, x\right )} + 20 \, {\left (e^{5} - 5\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.24, size = 17, normalized size = 0.89 \begin {gather*} {\mathrm {e}}^{2\,x}\,{\left (x\,\ln \relax (x)-5\right )}^2\,\left ({\mathrm {e}}^5-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 49, normalized size = 2.58 \begin {gather*} \left (- 5 x^{2} \log {\relax (x )}^{2} + x^{2} e^{5} \log {\relax (x )}^{2} - 10 x e^{5} \log {\relax (x )} + 50 x \log {\relax (x )} - 125 + 25 e^{5}\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________