Optimal. Leaf size=26 \[ 2-4 e^{x^2}+(-7+x)^2-x-\log \left (\frac {\log (x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 21, normalized size of antiderivative = 0.81, number of steps used = 7, number of rules used = 5, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {6742, 2209, 6688, 2302, 29} \begin {gather*} x^2-4 e^{x^2}-15 x+\log (x)-\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 2209
Rule 2302
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-8 e^{x^2} x+\frac {-1+\log (x)-15 x \log (x)+2 x^2 \log (x)}{x \log (x)}\right ) \, dx\\ &=-\left (8 \int e^{x^2} x \, dx\right )+\int \frac {-1+\log (x)-15 x \log (x)+2 x^2 \log (x)}{x \log (x)} \, dx\\ &=-4 e^{x^2}+\int \left (-15+\frac {1}{x}+2 x-\frac {1}{x \log (x)}\right ) \, dx\\ &=-4 e^{x^2}-15 x+x^2+\log (x)-\int \frac {1}{x \log (x)} \, dx\\ &=-4 e^{x^2}-15 x+x^2+\log (x)-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (x)\right )\\ &=-4 e^{x^2}-15 x+x^2+\log (x)-\log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.81 \begin {gather*} -4 e^{x^2}-15 x+x^2+\log (x)-\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 20, normalized size = 0.77 \begin {gather*} x^{2} - 15 \, x - 4 \, e^{\left (x^{2}\right )} + \log \relax (x) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 20, normalized size = 0.77 \begin {gather*} x^{2} - 15 \, x - 4 \, e^{\left (x^{2}\right )} + \log \relax (x) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 0.81
method | result | size |
default | \(x^{2}-15 x +\ln \relax (x )-\ln \left (\ln \relax (x )\right )-4 \,{\mathrm e}^{x^{2}}\) | \(21\) |
norman | \(x^{2}-15 x +\ln \relax (x )-\ln \left (\ln \relax (x )\right )-4 \,{\mathrm e}^{x^{2}}\) | \(21\) |
risch | \(x^{2}-15 x +\ln \relax (x )-\ln \left (\ln \relax (x )\right )-4 \,{\mathrm e}^{x^{2}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 20, normalized size = 0.77 \begin {gather*} x^{2} - 15 \, x - 4 \, e^{\left (x^{2}\right )} + \log \relax (x) - \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.21, size = 20, normalized size = 0.77 \begin {gather*} \ln \relax (x)-4\,{\mathrm {e}}^{x^2}-\ln \left (\ln \relax (x)\right )-15\,x+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 20, normalized size = 0.77 \begin {gather*} x^{2} - 15 x - 4 e^{x^{2}} + \log {\relax (x )} - \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________