Optimal. Leaf size=26 \[ \frac {x \left (3-\frac {5+x}{x}\right )^2}{4+e^{e^x}-x} \]
________________________________________________________________________________________
Rubi [F] time = 3.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-100+50 x-4 x^2+e^{e^x} \left (-25+4 x^2+e^x \left (-25 x+20 x^2-4 x^3\right )\right )}{16 x^2+e^{2 e^x} x^2-8 x^3+x^4+e^{e^x} \left (8 x^2-2 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(5-2 x) \left (2 (-10+x)+e^{e^x+x} x (-5+2 x)-e^{e^x} (5+2 x)\right )}{\left (4+e^{e^x}-x\right )^2 x^2} \, dx\\ &=\int \left (-\frac {e^{e^x+x} (-5+2 x)^2}{\left (4+e^{e^x}-x\right )^2 x}+\frac {(-5+2 x) \left (20+5 e^{e^x}-2 x+2 e^{e^x} x\right )}{\left (4+e^{e^x}-x\right )^2 x^2}\right ) \, dx\\ &=-\int \frac {e^{e^x+x} (-5+2 x)^2}{\left (4+e^{e^x}-x\right )^2 x} \, dx+\int \frac {(-5+2 x) \left (20+5 e^{e^x}-2 x+2 e^{e^x} x\right )}{\left (4+e^{e^x}-x\right )^2 x^2} \, dx\\ &=-\int \left (-\frac {20 e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2}+\frac {25 e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2 x}+\frac {4 e^{e^x+x} x}{\left (4+e^{e^x}-x\right )^2}\right ) \, dx+\int \left (\frac {(-5+2 x)^2}{x \left (-4-e^{e^x}+x\right )^2}+\frac {-25+4 x^2}{\left (4+e^{e^x}-x\right ) x^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{e^x+x} x}{\left (4+e^{e^x}-x\right )^2} \, dx\right )+20 \int \frac {e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2} \, dx-25 \int \frac {e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2 x} \, dx+\int \frac {(-5+2 x)^2}{x \left (-4-e^{e^x}+x\right )^2} \, dx+\int \frac {-25+4 x^2}{\left (4+e^{e^x}-x\right ) x^2} \, dx\\ &=-\left (4 \int \frac {e^{e^x+x} x}{\left (4+e^{e^x}-x\right )^2} \, dx\right )+20 \int \frac {e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2} \, dx-25 \int \frac {e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2 x} \, dx+\int \left (\frac {4}{4+e^{e^x}-x}-\frac {25}{\left (4+e^{e^x}-x\right ) x^2}\right ) \, dx+\int \left (-\frac {20}{\left (4+e^{e^x}-x\right )^2}+\frac {25}{\left (4+e^{e^x}-x\right )^2 x}+\frac {4 x}{\left (4+e^{e^x}-x\right )^2}\right ) \, dx\\ &=4 \int \frac {1}{4+e^{e^x}-x} \, dx+4 \int \frac {x}{\left (4+e^{e^x}-x\right )^2} \, dx-4 \int \frac {e^{e^x+x} x}{\left (4+e^{e^x}-x\right )^2} \, dx-20 \int \frac {1}{\left (4+e^{e^x}-x\right )^2} \, dx+20 \int \frac {e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2} \, dx-25 \int \frac {1}{\left (4+e^{e^x}-x\right ) x^2} \, dx+25 \int \frac {1}{\left (4+e^{e^x}-x\right )^2 x} \, dx-25 \int \frac {e^{e^x+x}}{\left (4+e^{e^x}-x\right )^2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.73, size = 23, normalized size = 0.88 \begin {gather*} \frac {(-5+2 x)^2}{\left (4+e^{e^x}-x\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 27, normalized size = 1.04 \begin {gather*} -\frac {4 \, x^{2} - 20 \, x + 25}{x^{2} - x e^{\left (e^{x}\right )} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.96
method | result | size |
norman | \(\frac {-4 x^{2}+20 x -25}{x \left (x -{\mathrm e}^{{\mathrm e}^{x}}-4\right )}\) | \(25\) |
risch | \(-\frac {4 x^{2}-20 x +25}{x \left (x -{\mathrm e}^{{\mathrm e}^{x}}-4\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 27, normalized size = 1.04 \begin {gather*} -\frac {4 \, x^{2} - 20 \, x + 25}{x^{2} - x e^{\left (e^{x}\right )} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 67, normalized size = 2.58 \begin {gather*} \frac {25\,x-105\,x^2\,{\mathrm {e}}^x+36\,x^3\,{\mathrm {e}}^x-4\,x^4\,{\mathrm {e}}^x+100\,x\,{\mathrm {e}}^x-20\,x^2+4\,x^3}{x^2\,\left (4\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x+1\right )\,\left ({\mathrm {e}}^{{\mathrm {e}}^x}-x+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.85 \begin {gather*} \frac {4 x^{2} - 20 x + 25}{- x^{2} + x e^{e^{x}} + 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________