Optimal. Leaf size=33 \[ \left (e^{e^3+x}-x-\frac {400}{\frac {1}{5} \left (-2+\frac {5}{x}-x\right )+x}\right )^2 \]
________________________________________________________________________________________
Rubi [C] time = 2.87, antiderivative size = 868, normalized size of antiderivative = 26.30, number of steps used = 70, number of rules used = 19, integrand size = 152, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {6741, 6742, 2194, 638, 614, 618, 204, 738, 728, 722, 818, 773, 634, 628, 800, 2176, 2177, 2178, 2270} \begin {gather*} -\frac {32 (5-x) x^6}{19 \left (4 x^2-2 x+5\right )^2}+\frac {48 (5-x) x^5}{19 \left (4 x^2-2 x+5\right )^2}-\frac {12 (195-58 x) x^4}{361 \left (4 x^2-2 x+5\right )}-\frac {144 (5-x) x^4}{19 \left (4 x^2-2 x+5\right )^2}+\frac {12 (245-68 x) x^3}{361 \left (4 x^2-2 x+5\right )}+\frac {7955820 (1-4 x) x^3}{19 \left (4 x^2-2 x+5\right )^2}+\frac {8124 (5-x) x^3}{19 \left (4 x^2-2 x+5\right )^2}-\frac {212 x^3}{361}-\frac {18 (395-98 x) x^2}{361 \left (4 x^2-2 x+5\right )}+\frac {1272 x^2}{361}-2 e^{x+e^3} x+\frac {11994660 (5-x) x}{361 \left (4 x^2-2 x+5\right )}+\frac {30075 (5-x) x}{19 \left (4 x^2-2 x+5\right )^2}-\frac {750 x}{361}+e^{2 x+2 e^3}-\frac {500}{19} \left (19+3 i \sqrt {19}\right ) e^{\frac {1}{4}+\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x-i \sqrt {19}-1\right )\right )-\frac {500}{19} \left (1+i \sqrt {19}\right ) e^{\frac {1}{4}+\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x-i \sqrt {19}-1\right )\right )+\frac {2000 i e^{\frac {1}{4}+\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x-i \sqrt {19}-1\right )\right )}{\sqrt {19}}+\frac {10000}{19} e^{\frac {1}{4}+\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x-i \sqrt {19}-1\right )\right )-\frac {500}{19} \left (19-3 i \sqrt {19}\right ) e^{\frac {1}{4}-\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x+i \sqrt {19}-1\right )\right )-\frac {500}{19} \left (1-i \sqrt {19}\right ) e^{\frac {1}{4}-\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x+i \sqrt {19}-1\right )\right )-\frac {2000 i e^{\frac {1}{4}-\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x+i \sqrt {19}-1\right )\right )}{\sqrt {19}}+\frac {10000}{19} e^{\frac {1}{4}-\frac {i \sqrt {19}}{4}+e^3} \text {Ei}\left (\frac {1}{4} \left (4 x+i \sqrt {19}-1\right )\right )-\frac {2000 \left (1-i \sqrt {19}\right ) e^{x+e^3}}{19 \left (-4 x-i \sqrt {19}+1\right )}+\frac {40000 e^{x+e^3}}{19 \left (-4 x-i \sqrt {19}+1\right )}-\frac {2000 \left (1+i \sqrt {19}\right ) e^{x+e^3}}{19 \left (-4 x+i \sqrt {19}+1\right )}+\frac {40000 e^{x+e^3}}{19 \left (-4 x+i \sqrt {19}+1\right )}+\frac {30075 (15-22 x)}{722 \left (4 x^2-2 x+5\right )}-\frac {60300375 (1-4 x)}{1444 \left (4 x^2-2 x+5\right )}-\frac {20100125 (5-x)}{38 \left (4 x^2-2 x+5\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 204
Rule 614
Rule 618
Rule 628
Rule 634
Rule 638
Rule 722
Rule 728
Rule 738
Rule 773
Rule 800
Rule 818
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2270
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {40200250 x-120300 x^2-31823280 x^3-32496 x^4+576 x^5-192 x^6+128 x^7+e^{2 e^3+2 x} \left (250-300 x+720 x^2-496 x^3+576 x^4-192 x^5+128 x^6\right )+e^{e^3+x} \left (-100250-59950 x+79580 x^2-208224 x^3+127920 x^4-64384 x^5+64 x^6-128 x^7\right )}{\left (5-2 x+4 x^2\right )^3} \, dx\\ &=\int \left (2 e^{2 e^3+2 x}+\frac {40200250 x}{\left (5-2 x+4 x^2\right )^3}-\frac {120300 x^2}{\left (5-2 x+4 x^2\right )^3}-\frac {31823280 x^3}{\left (5-2 x+4 x^2\right )^3}-\frac {32496 x^4}{\left (5-2 x+4 x^2\right )^3}+\frac {576 x^5}{\left (5-2 x+4 x^2\right )^3}-\frac {192 x^6}{\left (5-2 x+4 x^2\right )^3}+\frac {128 x^7}{\left (5-2 x+4 x^2\right )^3}-\frac {2 e^{e^3+x} \left (10025+10005 x-11976 x^2+8028 x^3+16 x^5\right )}{\left (5-2 x+4 x^2\right )^2}\right ) \, dx\\ &=2 \int e^{2 e^3+2 x} \, dx-2 \int \frac {e^{e^3+x} \left (10025+10005 x-11976 x^2+8028 x^3+16 x^5\right )}{\left (5-2 x+4 x^2\right )^2} \, dx+128 \int \frac {x^7}{\left (5-2 x+4 x^2\right )^3} \, dx-192 \int \frac {x^6}{\left (5-2 x+4 x^2\right )^3} \, dx+576 \int \frac {x^5}{\left (5-2 x+4 x^2\right )^3} \, dx-32496 \int \frac {x^4}{\left (5-2 x+4 x^2\right )^3} \, dx-120300 \int \frac {x^2}{\left (5-2 x+4 x^2\right )^3} \, dx-31823280 \int \frac {x^3}{\left (5-2 x+4 x^2\right )^3} \, dx+40200250 \int \frac {x}{\left (5-2 x+4 x^2\right )^3} \, dx\\ &=e^{2 e^3+2 x}-\frac {20100125 (5-x)}{38 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (5-x) x}{19 \left (5-2 x+4 x^2\right )^2}+\frac {7955820 (1-4 x) x^3}{19 \left (5-2 x+4 x^2\right )^2}+\frac {8124 (5-x) x^3}{19 \left (5-2 x+4 x^2\right )^2}-\frac {144 (5-x) x^4}{19 \left (5-2 x+4 x^2\right )^2}+\frac {48 (5-x) x^5}{19 \left (5-2 x+4 x^2\right )^2}-\frac {32 (5-x) x^6}{19 \left (5-2 x+4 x^2\right )^2}+\frac {16}{19} \int \frac {(60-6 x) x^5}{\left (5-2 x+4 x^2\right )^2} \, dx-\frac {24}{19} \int \frac {(50-4 x) x^4}{\left (5-2 x+4 x^2\right )^2} \, dx-2 \int \left (e^{e^3+x}+e^{e^3+x} x-\frac {4000 e^{e^3+x} (-5+x)}{\left (5-2 x+4 x^2\right )^2}+\frac {2000 e^{e^3+x} (-1+x)}{5-2 x+4 x^2}\right ) \, dx+\frac {72}{19} \int \frac {(40-2 x) x^3}{\left (5-2 x+4 x^2\right )^2} \, dx-\frac {30075}{38} \int \frac {10+4 x}{\left (5-2 x+4 x^2\right )^2} \, dx-\frac {121860}{19} \int \frac {x^2}{\left (5-2 x+4 x^2\right )^2} \, dx-\frac {23867460}{19} \int \frac {x^2}{\left (5-2 x+4 x^2\right )^2} \, dx+\frac {60300375}{38} \int \frac {1}{\left (5-2 x+4 x^2\right )^2} \, dx\\ &=e^{2 e^3+2 x}-\frac {20100125 (5-x)}{38 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (5-x) x}{19 \left (5-2 x+4 x^2\right )^2}+\frac {7955820 (1-4 x) x^3}{19 \left (5-2 x+4 x^2\right )^2}+\frac {8124 (5-x) x^3}{19 \left (5-2 x+4 x^2\right )^2}-\frac {144 (5-x) x^4}{19 \left (5-2 x+4 x^2\right )^2}+\frac {48 (5-x) x^5}{19 \left (5-2 x+4 x^2\right )^2}-\frac {32 (5-x) x^6}{19 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (15-22 x)}{722 \left (5-2 x+4 x^2\right )}-\frac {60300375 (1-4 x)}{1444 \left (5-2 x+4 x^2\right )}+\frac {11994660 (5-x) x}{361 \left (5-2 x+4 x^2\right )}-\frac {18 (395-98 x) x^2}{361 \left (5-2 x+4 x^2\right )}+\frac {12 (245-68 x) x^3}{361 \left (5-2 x+4 x^2\right )}-\frac {12 (195-58 x) x^4}{361 \left (5-2 x+4 x^2\right )}-\frac {1}{361} \int \frac {x^3 (-9360+2544 x)}{5-2 x+4 x^2} \, dx+\frac {3}{722} \int \frac {x^2 (-5880+1392 x)}{5-2 x+4 x^2} \, dx-\frac {9}{722} \int \frac {x (-3160+544 x)}{5-2 x+4 x^2} \, dx-2 \int e^{e^3+x} \, dx-2 \int e^{e^3+x} x \, dx-\frac {304650}{361} \int \frac {1}{5-2 x+4 x^2} \, dx-\frac {330825}{361} \int \frac {1}{5-2 x+4 x^2} \, dx-4000 \int \frac {e^{e^3+x} (-1+x)}{5-2 x+4 x^2} \, dx+8000 \int \frac {e^{e^3+x} (-5+x)}{\left (5-2 x+4 x^2\right )^2} \, dx-\frac {59668650}{361} \int \frac {1}{5-2 x+4 x^2} \, dx+\frac {60300375}{361} \int \frac {1}{5-2 x+4 x^2} \, dx\\ &=-2 e^{e^3+x}+e^{2 e^3+2 x}-\frac {612 x}{361}-2 e^{e^3+x} x-\frac {20100125 (5-x)}{38 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (5-x) x}{19 \left (5-2 x+4 x^2\right )^2}+\frac {7955820 (1-4 x) x^3}{19 \left (5-2 x+4 x^2\right )^2}+\frac {8124 (5-x) x^3}{19 \left (5-2 x+4 x^2\right )^2}-\frac {144 (5-x) x^4}{19 \left (5-2 x+4 x^2\right )^2}+\frac {48 (5-x) x^5}{19 \left (5-2 x+4 x^2\right )^2}-\frac {32 (5-x) x^6}{19 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (15-22 x)}{722 \left (5-2 x+4 x^2\right )}-\frac {60300375 (1-4 x)}{1444 \left (5-2 x+4 x^2\right )}+\frac {11994660 (5-x) x}{361 \left (5-2 x+4 x^2\right )}-\frac {18 (395-98 x) x^2}{361 \left (5-2 x+4 x^2\right )}+\frac {12 (245-68 x) x^3}{361 \left (5-2 x+4 x^2\right )}-\frac {12 (195-58 x) x^4}{361 \left (5-2 x+4 x^2\right )}-\frac {1}{361} \int \left (-1806-2022 x+636 x^2+\frac {6 (1505+1083 x)}{5-2 x+4 x^2}\right ) \, dx-\frac {9 \int \frac {-2720-11552 x}{5-2 x+4 x^2} \, dx}{2888}+\frac {3}{722} \int \left (-1296+348 x+\frac {12 (540-361 x)}{5-2 x+4 x^2}\right ) \, dx+2 \int e^{e^3+x} \, dx+\frac {609300}{361} \operatorname {Subst}\left (\int \frac {1}{-76-x^2} \, dx,x,-2+8 x\right )+\frac {661650}{361} \operatorname {Subst}\left (\int \frac {1}{-76-x^2} \, dx,x,-2+8 x\right )-4000 \int \left (\frac {\left (1+\frac {3 i}{\sqrt {19}}\right ) e^{e^3+x}}{-2-2 i \sqrt {19}+8 x}+\frac {\left (1-\frac {3 i}{\sqrt {19}}\right ) e^{e^3+x}}{-2+2 i \sqrt {19}+8 x}\right ) \, dx+8000 \int \left (-\frac {5 e^{e^3+x}}{\left (5-2 x+4 x^2\right )^2}+\frac {e^{e^3+x} x}{\left (5-2 x+4 x^2\right )^2}\right ) \, dx+\frac {119337300}{361} \operatorname {Subst}\left (\int \frac {1}{-76-x^2} \, dx,x,-2+8 x\right )-\frac {120600750}{361} \operatorname {Subst}\left (\int \frac {1}{-76-x^2} \, dx,x,-2+8 x\right )\\ &=e^{2 e^3+2 x}-\frac {750 x}{361}-2 e^{e^3+x} x+\frac {1272 x^2}{361}-\frac {212 x^3}{361}-\frac {20100125 (5-x)}{38 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (5-x) x}{19 \left (5-2 x+4 x^2\right )^2}+\frac {7955820 (1-4 x) x^3}{19 \left (5-2 x+4 x^2\right )^2}+\frac {8124 (5-x) x^3}{19 \left (5-2 x+4 x^2\right )^2}-\frac {144 (5-x) x^4}{19 \left (5-2 x+4 x^2\right )^2}+\frac {48 (5-x) x^5}{19 \left (5-2 x+4 x^2\right )^2}-\frac {32 (5-x) x^6}{19 \left (5-2 x+4 x^2\right )^2}+\frac {30075 (15-22 x)}{722 \left (5-2 x+4 x^2\right )}-\frac {60300375 (1-4 x)}{1444 \left (5-2 x+4 x^2\right )}+\frac {11994660 (5-x) x}{361 \left (5-2 x+4 x^2\right )}-\frac {18 (395-98 x) x^2}{361 \left (5-2 x+4 x^2\right )}+\frac {12 (245-68 x) x^3}{361 \left (5-2 x+4 x^2\right )}-\frac {12 (195-58 x) x^4}{361 \left (5-2 x+4 x^2\right )}+\frac {3750 \tan ^{-1}\left (\frac {1-4 x}{\sqrt {19}}\right )}{361 \sqrt {19}}-\frac {6}{361} \int \frac {1505+1083 x}{5-2 x+4 x^2} \, dx+\frac {18}{361} \int \frac {540-361 x}{5-2 x+4 x^2} \, dx+\frac {9}{2} \int \frac {-2+8 x}{5-2 x+4 x^2} \, dx+\frac {6309}{361} \int \frac {1}{5-2 x+4 x^2} \, dx+8000 \int \frac {e^{e^3+x} x}{\left (5-2 x+4 x^2\right )^2} \, dx-40000 \int \frac {e^{e^3+x}}{\left (5-2 x+4 x^2\right )^2} \, dx-\frac {1}{19} \left (4000 \left (19-3 i \sqrt {19}\right )\right ) \int \frac {e^{e^3+x}}{-2+2 i \sqrt {19}+8 x} \, dx-\frac {1}{19} \left (4000 \left (19+3 i \sqrt {19}\right )\right ) \int \frac {e^{e^3+x}}{-2-2 i \sqrt {19}+8 x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 92, normalized size = 2.79 \begin {gather*} -2 \left (-\frac {1}{2} e^{2 \left (e^3+x\right )}-\frac {x^2}{2}-\frac {500000 (-5+2 x)}{\left (5-2 x+4 x^2\right )^2}-\frac {500 (995+2 x)}{5-2 x+4 x^2}+\frac {e^{e^3+x} x \left (2005-2 x+4 x^2\right )}{5-2 x+4 x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.46, size = 114, normalized size = 3.45 \begin {gather*} \frac {16 \, x^{6} - 16 \, x^{5} + 44 \, x^{4} + 7980 \, x^{3} + 3976025 \, x^{2} + {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )} e^{\left (2 \, x + 2 \, e^{3}\right )} - 2 \, {\left (16 \, x^{5} - 16 \, x^{4} + 8044 \, x^{3} - 4020 \, x^{2} + 10025 \, x\right )} e^{\left (x + e^{3}\right )} + 20000 \, x - 25000}{16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.35, size = 166, normalized size = 5.03 \begin {gather*} \frac {16 \, x^{6} - 32 \, x^{5} e^{\left (x + e^{3}\right )} - 16 \, x^{5} + 16 \, x^{4} e^{\left (2 \, x + 2 \, e^{3}\right )} + 32 \, x^{4} e^{\left (x + e^{3}\right )} + 44 \, x^{4} - 16 \, x^{3} e^{\left (2 \, x + 2 \, e^{3}\right )} - 16088 \, x^{3} e^{\left (x + e^{3}\right )} + 7980 \, x^{3} + 44 \, x^{2} e^{\left (2 \, x + 2 \, e^{3}\right )} + 8040 \, x^{2} e^{\left (x + e^{3}\right )} + 3976025 \, x^{2} - 20 \, x e^{\left (2 \, x + 2 \, e^{3}\right )} - 20050 \, x e^{\left (x + e^{3}\right )} + 20000 \, x + 25 \, e^{\left (2 \, x + 2 \, e^{3}\right )} - 25000}{16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.93, size = 80, normalized size = 2.42
method | result | size |
risch | \(x^{2}+\frac {500 x^{3}+248500 x^{2}+1250 x -\frac {3125}{2}}{x^{4}-x^{3}+\frac {11}{4} x^{2}-\frac {5}{4} x +\frac {25}{16}}+{\mathrm e}^{2 \,{\mathrm e}^{3}+2 x}-\frac {2 x \left (4 x^{2}-2 x +2005\right ) {\mathrm e}^{{\mathrm e}^{3}+x}}{4 x^{2}-2 x +5}\) | \(80\) |
norman | \(\frac {8024 x^{4}+10025 x +3997970 x^{2}-16 x^{5}+16 x^{6}+25 \,{\mathrm e}^{2 \,{\mathrm e}^{3}+2 x}-20050 x \,{\mathrm e}^{{\mathrm e}^{3}+x}+8040 x^{2} {\mathrm e}^{{\mathrm e}^{3}+x}+16 x^{4} {\mathrm e}^{2 \,{\mathrm e}^{3}+2 x}-16088 \,{\mathrm e}^{{\mathrm e}^{3}+x} x^{3}+32 \,{\mathrm e}^{{\mathrm e}^{3}+x} x^{4}-32 \,{\mathrm e}^{{\mathrm e}^{3}+x} x^{5}-20 \,{\mathrm e}^{2 \,{\mathrm e}^{3}+2 x} x +44 \,{\mathrm e}^{2 \,{\mathrm e}^{3}+2 x} x^{2}-16 \,{\mathrm e}^{2 \,{\mathrm e}^{3}+2 x} x^{3}-\frac {50125}{4}}{\left (4 x^{2}-2 x +5\right )^{2}}\) | \(142\) |
derivativedivides | \(\text {Expression too large to display}\) | \(94585\) |
default | \(\text {Expression too large to display}\) | \(94585\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.61, size = 349, normalized size = 10.58 \begin {gather*} x^{2} + \frac {92336 \, x^{3} - 98132 \, x^{2} + 120160 \, x - 59825}{1444 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} - \frac {3 \, {\left (17472 \, x^{3} + 24440 \, x^{2} + 3200 \, x + 31875\right )}}{1444 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} - \frac {9 \, {\left (4416 \, x^{3} - 8366 \, x^{2} + 6680 \, x - 6225\right )}}{361 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} + \frac {2031 \, {\left (3376 \, x^{3} + 356 \, x^{2} + 2020 \, x + 1225\right )}}{1444 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} - \frac {1988955 \, {\left (240 \, x^{3} - 1624 \, x^{2} + 520 \, x - 1025\right )}}{722 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} - \frac {30075 \, {\left (88 \, x^{3} - 66 \, x^{2} - 50 \, x - 75\right )}}{722 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} + \frac {20100125 \, {\left (48 \, x^{3} - 36 \, x^{2} + 104 \, x - 205\right )}}{1444 \, {\left (16 \, x^{4} - 16 \, x^{3} + 44 \, x^{2} - 20 \, x + 25\right )}} + \frac {{\left (4 \, x^{2} e^{\left (2 \, e^{3}\right )} - 2 \, x e^{\left (2 \, e^{3}\right )} + 5 \, e^{\left (2 \, e^{3}\right )}\right )} e^{\left (2 \, x\right )} - 2 \, {\left (4 \, x^{3} e^{\left (e^{3}\right )} - 2 \, x^{2} e^{\left (e^{3}\right )} + 2005 \, x e^{\left (e^{3}\right )}\right )} e^{x}}{4 \, x^{2} - 2 \, x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.41, size = 80, normalized size = 2.42 \begin {gather*} {\mathrm {e}}^{2\,x+2\,{\mathrm {e}}^3}+x^2+\frac {500\,x^3+248500\,x^2+1250\,x-\frac {3125}{2}}{x^4-x^3+\frac {11\,x^2}{4}-\frac {5\,x}{4}+\frac {25}{16}}-\frac {{\mathrm {e}}^{x+{\mathrm {e}}^3}\,\left (2\,x^3-x^2+\frac {2005\,x}{2}\right )}{x^2-\frac {x}{2}+\frac {5}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 88, normalized size = 2.67 \begin {gather*} x^{2} + \frac {\left (4 x^{2} - 2 x + 5\right ) e^{2 x + 2 e^{3}} + \left (- 8 x^{3} + 4 x^{2} - 4010 x\right ) e^{x + e^{3}}}{4 x^{2} - 2 x + 5} + \frac {8000 x^{3} + 3976000 x^{2} + 20000 x - 25000}{16 x^{4} - 16 x^{3} + 44 x^{2} - 20 x + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________