Optimal. Leaf size=28 \[ 4 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \left (-e+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 6.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \left (e^{2 x} \left (-224 e+200 x+224 x^2\right )+e^{2 x} \left (-84 e+80 x+84 x^2\right ) \log \left (\frac {\log (3)}{x}\right )+e^{2 x} \left (-8 e+8 x+8 x^2\right ) \log ^2\left (\frac {\log (3)}{x}\right )\right )}{25+10 \log \left (\frac {\log (3)}{x}\right )+\log ^2\left (\frac {\log (3)}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \left (e^{2 x} \left (-224 e+200 x+224 x^2\right )+e^{2 x} \left (-84 e+80 x+84 x^2\right ) \log \left (\frac {\log (3)}{x}\right )+e^{2 x} \left (-8 e+8 x+8 x^2\right ) \log ^2\left (\frac {\log (3)}{x}\right )\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx\\ &=\int \left (-\frac {224 e^{1+2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}}}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}+\frac {200 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}+\frac {224 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x^2}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}-\frac {84 e^{1+2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \log \left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}+\frac {80 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x \log \left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}+\frac {84 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x^2 \log \left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}-\frac {8 e^{1+2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \log ^2\left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}+\frac {8 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x \log ^2\left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}+\frac {8 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x^2 \log ^2\left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2}\right ) \, dx\\ &=-\left (8 \int \frac {e^{1+2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \log ^2\left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx\right )+8 \int \frac {e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x \log ^2\left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx+8 \int \frac {e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x^2 \log ^2\left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx+80 \int \frac {e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x \log \left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx-84 \int \frac {e^{1+2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \log \left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx+84 \int \frac {e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x^2 \log \left (\frac {\log (3)}{x}\right )}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx+200 \int \frac {e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx-224 \int \frac {e^{1+2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}}}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx+224 \int \frac {e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} x^2}{\left (5+\log \left (\frac {\log (3)}{x}\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 28, normalized size = 1.00 \begin {gather*} -4 e^{2 x+\frac {x}{5+\log \left (\frac {\log (3)}{x}\right )}} \left (e-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.09, size = 28, normalized size = 1.00 \begin {gather*} 4 \, {\left (x^{2} - e\right )} e^{\left (2 \, x + \frac {x}{\log \left (\frac {\log \relax (3)}{x}\right ) + 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.57, size = 36, normalized size = 1.29
method | result | size |
risch | \(-4 \left ({\mathrm e}-x^{2}\right ) {\mathrm e}^{\frac {x \left (-2 \ln \left (\ln \relax (3)\right )+2 \ln \relax (x )-11\right )}{-\ln \left (\ln \relax (3)\right )+\ln \relax (x )-5}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 29, normalized size = 1.04 \begin {gather*} 4 \, {\left (x^{2} - e\right )} e^{\left (2 \, x - \frac {x}{\log \relax (x) - \log \left (\log \relax (3)\right ) - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {x}{\ln \left (\frac {\ln \relax (3)}{x}\right )+5}}\,\left ({\mathrm {e}}^{2\,x}\,\left (8\,x^2+8\,x-8\,\mathrm {e}\right )\,{\ln \left (\frac {\ln \relax (3)}{x}\right )}^2+{\mathrm {e}}^{2\,x}\,\left (84\,x^2+80\,x-84\,\mathrm {e}\right )\,\ln \left (\frac {\ln \relax (3)}{x}\right )+{\mathrm {e}}^{2\,x}\,\left (224\,x^2+200\,x-224\,\mathrm {e}\right )\right )}{{\ln \left (\frac {\ln \relax (3)}{x}\right )}^2+10\,\ln \left (\frac {\ln \relax (3)}{x}\right )+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________