Optimal. Leaf size=31 \[ \frac {x}{2}-x^2 \left (x+\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x^3+4 x^2 \log (5)+\left (x-8 x^4+\left (1-8 x^2-8 x^3\right ) \log (5)\right ) \log (x) \log (\log (x))+\left (4 x^2+4 x \log (5)+\left (-12 x^3+\left (-8 x-12 x^2\right ) \log (5)\right ) \log (x) \log (\log (x))\right ) \log \left (\frac {x^2}{\left (x^2+2 x \log (5)+\log ^2(5)\right ) \log (\log (x))}\right )+\left (-4 x^2-4 x \log (5)\right ) \log (x) \log (\log (x)) \log ^2\left (\frac {x^2}{\left (x^2+2 x \log (5)+\log ^2(5)\right ) \log (\log (x))}\right )}{(2 x+2 \log (5)) \log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 x \left (x+\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )\right )}{\log (x) \log (\log (x))}+\frac {x-8 x^4+\log (5)-8 x^2 \log (5)-8 x^3 \log (5)-4 x \left (3 x^2+3 x \log (5)+\log (25)\right ) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-4 x (x+\log (5)) \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{2 (x+\log (5))}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x-8 x^4+\log (5)-8 x^2 \log (5)-8 x^3 \log (5)-4 x \left (3 x^2+3 x \log (5)+\log (25)\right ) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-4 x (x+\log (5)) \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx+2 \int \frac {x \left (x+\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )\right )}{\log (x) \log (\log (x))} \, dx\\ &=\frac {1}{2} \int \left (\frac {x-8 x^4+\log (5)-8 x^2 \log (5)-8 x^3 \log (5)}{x+\log (5)}-\frac {4 x \left (3 x^2+3 x \log (5)+\log (25)\right ) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)}-4 x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )\right ) \, dx+2 \int \left (\frac {x^2}{\log (x) \log (\log (x))}+\frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))}\right ) \, dx\\ &=\frac {1}{2} \int \frac {x-8 x^4+\log (5)-8 x^2 \log (5)-8 x^3 \log (5)}{x+\log (5)} \, dx+2 \int \frac {x^2}{\log (x) \log (\log (x))} \, dx-2 \int \frac {x \left (3 x^2+3 x \log (5)+\log (25)\right ) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx\\ &=\frac {1}{2} \int \left (1-8 x^3-8 x \log (5)+8 \log ^2(5)-\frac {8 \log ^3(5)}{x+\log (5)}\right ) \, dx+2 \int \frac {x^2}{\log (x) \log (\log (x))} \, dx+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx-2 \int \left (3 x^2 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+\log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-\frac {\log (5) \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)}\right ) \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )-4 \log ^3(5) \log (x+\log (5))+2 \int \frac {x^2}{\log (x) \log (\log (x))} \, dx+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx-6 \int x^2 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx-(2 \log (25)) \int \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )-4 \log ^3(5) \log (x+\log (5))-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-2 x \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+2 \int \frac {x^2}{\log (x) \log (\log (x))} \, dx+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx+6 \int \frac {x^2 (-x-\log (5)+\log (25) \log (x) \log (\log (x)))}{3 (x+\log (5)) \log (x) \log (\log (x))} \, dx+(2 \log (25)) \int \frac {-x-\log (5)+\log (25) \log (x) \log (\log (x))}{(x+\log (5)) \log (x) \log (\log (x))} \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )-4 \log ^3(5) \log (x+\log (5))-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-2 x \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+2 \int \frac {x^2}{\log (x) \log (\log (x))} \, dx+2 \int \frac {x^2 (-x-\log (5)+\log (25) \log (x) \log (\log (x)))}{(x+\log (5)) \log (x) \log (\log (x))} \, dx+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx+(2 \log (25)) \int \left (\frac {\log (25)}{x+\log (5)}-\frac {1}{\log (x) \log (\log (x))}\right ) \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )-4 \log ^3(5) \log (x+\log (5))+2 \log ^2(25) \log (x+\log (5))-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-2 x \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+2 \int \left (\frac {x^2 \log (25)}{x+\log (5)}-\frac {x^2}{\log (x) \log (\log (x))}\right ) \, dx+2 \int \frac {x^2}{\log (x) \log (\log (x))} \, dx+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx-(2 \log (25)) \int \frac {1}{\log (x) \log (\log (x))} \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )-4 \log ^3(5) \log (x+\log (5))+2 \log ^2(25) \log (x+\log (5))-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-2 x \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx+(2 \log (25)) \int \frac {x^2}{x+\log (5)} \, dx-(2 \log (25)) \int \frac {1}{\log (x) \log (\log (x))} \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )-4 \log ^3(5) \log (x+\log (5))+2 \log ^2(25) \log (x+\log (5))-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-2 x \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx+(2 \log (25)) \int \left (x-\log (5)+\frac {\log ^2(5)}{x+\log (5)}\right ) \, dx-(2 \log (25)) \int \frac {1}{\log (x) \log (\log (x))} \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ &=-x^4-2 x^2 \log (5)+\frac {1}{2} x \left (1+8 \log ^2(5)\right )+x^2 \log (25)-2 x \log (5) \log (25)-4 \log ^3(5) \log (x+\log (5))+2 \log ^2(5) \log (25) \log (x+\log (5))+2 \log ^2(25) \log (x+\log (5))-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-2 x \log (25) \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )+2 \int \frac {x \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{\log (x) \log (\log (x))} \, dx-2 \int x \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \, dx-(2 \log (25)) \int \frac {1}{\log (x) \log (\log (x))} \, dx+(2 \log (5) \log (25)) \int \frac {\log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )}{x+\log (5)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.26, size = 55, normalized size = 1.77 \begin {gather*} \frac {x}{2}-x^4-2 x^3 \log \left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right )-x^2 \log ^2\left (\frac {x^2}{(x+\log (5))^2 \log (\log (x))}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.07, size = 71, normalized size = 2.29 \begin {gather*} -x^{4} - 2 \, x^{3} \log \left (\frac {x^{2}}{{\left (x^{2} + 2 \, x \log \relax (5) + \log \relax (5)^{2}\right )} \log \left (\log \relax (x)\right )}\right ) - x^{2} \log \left (\frac {x^{2}}{{\left (x^{2} + 2 \, x \log \relax (5) + \log \relax (5)^{2}\right )} \log \left (\log \relax (x)\right )}\right )^{2} + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.81, size = 95, normalized size = 3.06 \begin {gather*} -x^{4} - x^{2} \log \left (x^{2} \log \left (\log \relax (x)\right ) + 2 \, x \log \relax (5) \log \left (\log \relax (x)\right ) + \log \relax (5)^{2} \log \left (\log \relax (x)\right )\right )^{2} - 4 \, x^{3} \log \relax (x) - 4 \, x^{2} \log \relax (x)^{2} + 2 \, {\left (x^{3} + 2 \, x^{2} \log \relax (x)\right )} \log \left (x^{2} \log \left (\log \relax (x)\right ) + 2 \, x \log \relax (5) \log \left (\log \relax (x)\right ) + \log \relax (5)^{2} \log \left (\log \relax (x)\right )\right ) + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.90, size = 6484, normalized size = 209.16
method | result | size |
risch | \(\text {Expression too large to display}\) | \(6484\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 92, normalized size = 2.97 \begin {gather*} -x^{4} - 4 \, x^{2} \log \left (x + \log \relax (5)\right )^{2} - 4 \, x^{3} \log \relax (x) - 4 \, x^{2} \log \relax (x)^{2} - x^{2} \log \left (\log \left (\log \relax (x)\right )\right )^{2} + 4 \, {\left (x^{3} + 2 \, x^{2} \log \relax (x) - x^{2} \log \left (\log \left (\log \relax (x)\right )\right )\right )} \log \left (x + \log \relax (5)\right ) + 2 \, {\left (x^{3} + 2 \, x^{2} \log \relax (x)\right )} \log \left (\log \left (\log \relax (x)\right )\right ) + \frac {1}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \left (\frac {x^2}{\ln \left (\ln \relax (x)\right )\,\left (x^2+2\,\ln \relax (5)\,x+{\ln \relax (5)}^2\right )}\right )\,\left (4\,x\,\ln \relax (5)+4\,x^2-\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (\ln \relax (5)\,\left (12\,x^2+8\,x\right )+12\,x^3\right )\right )+4\,x^2\,\ln \relax (5)+4\,x^3-\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (\ln \relax (5)\,\left (8\,x^3+8\,x^2-1\right )-x+8\,x^4\right )-\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,{\ln \left (\frac {x^2}{\ln \left (\ln \relax (x)\right )\,\left (x^2+2\,\ln \relax (5)\,x+{\ln \relax (5)}^2\right )}\right )}^2\,\left (4\,x^2+4\,\ln \relax (5)\,x\right )}{\ln \left (\ln \relax (x)\right )\,\ln \relax (x)\,\left (2\,x+2\,\ln \relax (5)\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.96, size = 66, normalized size = 2.13 \begin {gather*} - x^{4} - 2 x^{3} \log {\left (\frac {x^{2}}{\left (x^{2} + 2 x \log {\relax (5 )} + \log {\relax (5 )}^{2}\right ) \log {\left (\log {\relax (x )} \right )}} \right )} - x^{2} \log {\left (\frac {x^{2}}{\left (x^{2} + 2 x \log {\relax (5 )} + \log {\relax (5 )}^{2}\right ) \log {\left (\log {\relax (x )} \right )}} \right )}^{2} + \frac {x}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________