Optimal. Leaf size=35 \[ \frac {2+\frac {1}{5} \left (x-\frac {x}{-x^3+\frac {e^4}{5+x}}\right )}{e^4 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10 e^8-e^4 x^2+x^6 \left (-250-100 x-10 x^2\right )+x^3 \left (-75 x-30 x^2-3 x^3+e^4 (100+20 x)\right )}{5 e^{12} x^2+e^8 x^3 \left (-50 x^2-10 x^3\right )+e^4 x^6 \left (125 x^2+50 x^3+5 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2}{e^4 x^2}+\frac {-4 e^4-75 x^2-15 x^3}{5 e^4 \left (e^4-5 x^3-x^4\right )^2}+\frac {3}{5 e^4 \left (e^4-5 x^3-x^4\right )}\right ) \, dx\\ &=\frac {2}{e^4 x}+\frac {\int \frac {-4 e^4-75 x^2-15 x^3}{\left (e^4-5 x^3-x^4\right )^2} \, dx}{5 e^4}+\frac {3 \int \frac {1}{e^4-5 x^3-x^4} \, dx}{5 e^4}\\ &=\frac {2}{e^4 x}-\frac {3}{4 e^4 \left (e^4-5 x^3-x^4\right )}-\frac {\int \frac {16 e^4+75 x^2}{\left (e^4-5 x^3-x^4\right )^2} \, dx}{20 e^4}+\frac {3 \int \frac {1}{e^4-5 x^3-x^4} \, dx}{5 e^4}\\ &=\frac {2}{e^4 x}-\frac {3}{4 e^4 \left (e^4-5 x^3-x^4\right )}-\frac {\int \left (\frac {16 e^4}{\left (e^4-5 x^3-x^4\right )^2}+\frac {75 x^2}{\left (e^4-5 x^3-x^4\right )^2}\right ) \, dx}{20 e^4}+\frac {3 \int \frac {1}{e^4-5 x^3-x^4} \, dx}{5 e^4}\\ &=\frac {2}{e^4 x}-\frac {3}{4 e^4 \left (e^4-5 x^3-x^4\right )}-\frac {4}{5} \int \frac {1}{\left (e^4-5 x^3-x^4\right )^2} \, dx+\frac {3 \int \frac {1}{e^4-5 x^3-x^4} \, dx}{5 e^4}-\frac {15 \int \frac {x^2}{\left (e^4-5 x^3-x^4\right )^2} \, dx}{4 e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 33, normalized size = 0.94 \begin {gather*} \frac {\frac {10}{x}+\frac {5+x}{-e^4+5 x^3+x^4}}{5 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 43, normalized size = 1.23 \begin {gather*} -\frac {10 \, x^{4} + 50 \, x^{3} + x^{2} + 5 \, x - 10 \, e^{4}}{5 \, {\left (x e^{8} - {\left (x^{5} + 5 \, x^{4}\right )} e^{4}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 45, normalized size = 1.29
method | result | size |
risch | \(\frac {\left (-2 x^{4}-10 x^{3}-\frac {x^{2}}{5}+2 \,{\mathrm e}^{4}-x \right ) {\mathrm e}^{-4}}{x \left (-x^{4}-5 x^{3}+{\mathrm e}^{4}\right )}\) | \(45\) |
gosper | \(\frac {\left (-10 x^{4}-50 x^{3}-x^{2}+10 \,{\mathrm e}^{4}-5 x \right ) {\mathrm e}^{-4}}{5 x \left (-x^{4}-5 x^{3}+{\mathrm e}^{4}\right )}\) | \(48\) |
norman | \(\frac {2-2 \,{\mathrm e}^{-4} x^{4}-x \,{\mathrm e}^{-4}-\frac {x^{2} {\mathrm e}^{-4}}{5}-10 \,{\mathrm e}^{-4} x^{3}}{x \left (-x^{4}-5 x^{3}+{\mathrm e}^{4}\right )}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 44, normalized size = 1.26 \begin {gather*} \frac {10 \, x^{4} + 50 \, x^{3} + x^{2} + 5 \, x - 10 \, e^{4}}{5 \, {\left (x^{5} e^{4} + 5 \, x^{4} e^{4} - x e^{8}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.40, size = 34, normalized size = 0.97 \begin {gather*} \frac {\frac {x}{5}+1}{{\mathrm {e}}^4\,x^4+5\,{\mathrm {e}}^4\,x^3-{\mathrm {e}}^8}+\frac {2\,{\mathrm {e}}^{-4}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.49, size = 46, normalized size = 1.31 \begin {gather*} - \frac {- 10 x^{4} - 50 x^{3} - x^{2} - 5 x + 10 e^{4}}{5 x^{5} e^{4} + 25 x^{4} e^{4} - 5 x e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________