Optimal. Leaf size=25 \[ \frac {\log (x)-\log \left (\log \left (\log \left (\log \left (2+\frac {e^x}{4}\right )\right )\right )\right )}{10 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^x x+\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \left (8+e^x+\left (-16-2 e^x\right ) \log (x)\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )+\left (16+2 e^x\right ) \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right ) \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{\left (80 x^3+10 e^x x^3\right ) \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1-2 \log (x)-\frac {e^x x}{\left (8+e^x\right ) \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}+2 \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{10 x^3} \, dx\\ &=\frac {1}{10} \int \frac {1-2 \log (x)-\frac {e^x x}{\left (8+e^x\right ) \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}+2 \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx\\ &=\frac {1}{10} \int \left (\frac {8}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}+\frac {-x+\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )-2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log (x) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )+2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right ) \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}\right ) \, dx\\ &=\frac {1}{10} \int \frac {-x+\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )-2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log (x) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )+2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right ) \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {1}{10} \int \frac {1-2 \log (x)-\frac {x}{\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}+2 \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {1}{10} \int \left (\frac {-x+\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )-2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log (x) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}{x^3 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}+\frac {2 \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3}\right ) \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {1}{10} \int \frac {-x+\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )-2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log (x) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}{x^3 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx+\frac {1}{5} \int \frac {\log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {1}{10} \int \frac {1-2 \log (x)-\frac {x}{\log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}}{x^3} \, dx+\frac {1}{5} \int \frac {\log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {1}{10} \int \left (\frac {1-2 \log (x)}{x^3}-\frac {1}{x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )}\right ) \, dx+\frac {1}{5} \int \frac {\log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {1}{10} \int \frac {1-2 \log (x)}{x^3} \, dx-\frac {1}{10} \int \frac {1}{x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx+\frac {1}{5} \int \frac {\log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ &=\frac {\log (x)}{10 x^2}-\frac {1}{10} \int \frac {1}{x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx+\frac {1}{5} \int \frac {\log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^3} \, dx+\frac {4}{5} \int \frac {1}{\left (8+e^x\right ) x^2 \log \left (\frac {1}{4} \left (8+e^x\right )\right ) \log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right ) \log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.38, size = 29, normalized size = 1.16 \begin {gather*} \frac {1}{10} \left (\frac {\log (x)}{x^2}-\frac {\log \left (\log \left (\log \left (\log \left (\frac {1}{4} \left (8+e^x\right )\right )\right )\right )\right )}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.90, size = 20, normalized size = 0.80 \begin {gather*} \frac {\log \relax (x) - \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \, e^{x} + 2\right )\right )\right )\right )}{10 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.34, size = 20, normalized size = 0.80 \begin {gather*} \frac {\log \relax (x) - \log \left (\log \left (\log \left (\log \left (\frac {1}{4} \, e^{x} + 2\right )\right )\right )\right )}{10 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 0.96
method | result | size |
risch | \(-\frac {\ln \left (\ln \left (\ln \left (\ln \left (\frac {{\mathrm e}^{x}}{4}+2\right )\right )\right )\right )}{10 x^{2}}+\frac {\ln \relax (x )}{10 x^{2}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.83, size = 23, normalized size = 0.92 \begin {gather*} \frac {\log \relax (x) - \log \left (\log \left (\log \left (-2 \, \log \relax (2) + \log \left (e^{x} + 8\right )\right )\right )\right )}{10 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.13, size = 20, normalized size = 0.80 \begin {gather*} -\frac {\ln \left (\ln \left (\ln \left (\ln \left (\frac {{\mathrm {e}}^x}{4}+2\right )\right )\right )\right )-\ln \relax (x)}{10\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________