Optimal. Leaf size=21 \[ \frac {1}{2} e^{-\frac {3}{x}-4 x-x^2} x \]
________________________________________________________________________________________
Rubi [B] time = 0.31, antiderivative size = 47, normalized size of antiderivative = 2.24, number of steps used = 3, number of rules used = 3, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.064, Rules used = {6688, 12, 2288} \begin {gather*} -\frac {e^{-x^2-4 x-\frac {3}{x}} \left (-2 x^3-4 x^2+3\right )}{2 x \left (-\frac {3}{x^2}+2 x+4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {3}{x}-4 x-x^2} \left (3+x-4 x^2-2 x^3\right )}{2 x} \, dx\\ &=\frac {1}{2} \int \frac {e^{-\frac {3}{x}-4 x-x^2} \left (3+x-4 x^2-2 x^3\right )}{x} \, dx\\ &=-\frac {e^{-\frac {3}{x}-4 x-x^2} \left (3-4 x^2-2 x^3\right )}{2 x \left (4-\frac {3}{x^2}+2 x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 22, normalized size = 1.05 \begin {gather*} \frac {1}{2} e^{-\frac {3+4 x^2+x^3}{x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 25, normalized size = 1.19 \begin {gather*} e^{\left (-\frac {x^{3} + 4 \, x^{2} + x \log \relax (2) - x \log \relax (x) + 3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 25, normalized size = 1.19 \begin {gather*} e^{\left (-x^{2} - 4 \, x - \frac {3}{x} - \log \left (2 \, x\right ) + 2 \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 20, normalized size = 0.95
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{-\frac {x^{3}+4 x^{2}+3}{x}}}{2}\) | \(20\) |
gosper | \({\mathrm e}^{\frac {-x \ln \left (2 x \right )+2 x \ln \relax (x )-x^{3}-4 x^{2}-3}{x}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 18, normalized size = 0.86 \begin {gather*} \frac {1}{2} \, x e^{\left (-x^{2} - 4 \, x - \frac {3}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 19, normalized size = 0.90 \begin {gather*} \frac {x\,{\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{-x^2}\,{\mathrm {e}}^{-\frac {3}{x}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 27, normalized size = 1.29 \begin {gather*} e^{\frac {- x^{3} - 4 x^{2} - x \left (\log {\relax (x )} + \log {\relax (2 )}\right ) + 2 x \log {\relax (x )} - 3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________