Optimal. Leaf size=20 \[ \frac {-4 e^{-2+i \pi +2 x}+x}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 16, normalized size of antiderivative = 0.80, number of steps used = 3, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {14, 2197} \begin {gather*} \frac {4 e^{2 x-2}}{x^2}+\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 e^{-2+2 x} (-1+x)}{x^3}-\frac {1}{x^2}\right ) \, dx\\ &=\frac {1}{x}+8 \int \frac {e^{-2+2 x} (-1+x)}{x^3} \, dx\\ &=\frac {4 e^{-2+2 x}}{x^2}+\frac {1}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 16, normalized size = 0.80 \begin {gather*} \frac {4 e^{-2+2 x}}{x^2}+\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 16, normalized size = 0.80 \begin {gather*} \frac {x + e^{\left (2 \, x + 2 \, \log \relax (2) - 2\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 17, normalized size = 0.85 \begin {gather*} \frac {{\left (x e^{2} + 4 \, e^{\left (2 \, x\right )}\right )} e^{\left (-2\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 16, normalized size = 0.80
method | result | size |
risch | \(\frac {1}{x}+\frac {4 \,{\mathrm e}^{2 x -2}}{x^{2}}\) | \(16\) |
norman | \(\frac {x +{\mathrm e}^{2 \ln \relax (2)-2+2 x}}{x^{2}}\) | \(17\) |
derivativedivides | \(\frac {1}{x}+\frac {{\mathrm e}^{2 \ln \relax (2)-2+2 x}}{x^{2}}\) | \(19\) |
default | \(\frac {1}{x}+\frac {{\mathrm e}^{2 \ln \relax (2)-2+2 x}}{x^{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 22, normalized size = 1.10 \begin {gather*} 16 \, e^{\left (-2\right )} \Gamma \left (-1, -2 \, x\right ) + 32 \, e^{\left (-2\right )} \Gamma \left (-2, -2 \, x\right ) + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 14, normalized size = 0.70 \begin {gather*} \frac {x+4\,{\mathrm {e}}^{2\,x-2}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.70 \begin {gather*} \frac {1}{x} + \frac {4 e^{2 x - 2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________