Optimal. Leaf size=22 \[ 5+x-4 \left (\frac {1}{x^2}-x+x^2 \left (3+e^x+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 27, normalized size of antiderivative = 1.23, number of steps used = 11, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {14, 2196, 2176, 2194} \begin {gather*} -4 x^3-4 e^x x^2-12 x^2-\frac {4}{x^2}+5 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4 e^x x (2+x)+\frac {8+5 x^3-24 x^4-12 x^5}{x^3}\right ) \, dx\\ &=-\left (4 \int e^x x (2+x) \, dx\right )+\int \frac {8+5 x^3-24 x^4-12 x^5}{x^3} \, dx\\ &=-\left (4 \int \left (2 e^x x+e^x x^2\right ) \, dx\right )+\int \left (5+\frac {8}{x^3}-24 x-12 x^2\right ) \, dx\\ &=-\frac {4}{x^2}+5 x-12 x^2-4 x^3-4 \int e^x x^2 \, dx-8 \int e^x x \, dx\\ &=-\frac {4}{x^2}+5 x-8 e^x x-12 x^2-4 e^x x^2-4 x^3+8 \int e^x \, dx+8 \int e^x x \, dx\\ &=8 e^x-\frac {4}{x^2}+5 x-12 x^2-4 e^x x^2-4 x^3-8 \int e^x \, dx\\ &=-\frac {4}{x^2}+5 x-12 x^2-4 e^x x^2-4 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 1.09 \begin {gather*} -\frac {4}{x^2}+5 x-4 \left (3+e^x\right ) x^2-4 x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 29, normalized size = 1.32 \begin {gather*} -\frac {4 \, x^{5} + 4 \, x^{4} e^{x} + 12 \, x^{4} - 5 \, x^{3} + 4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 29, normalized size = 1.32 \begin {gather*} -\frac {4 \, x^{5} + 4 \, x^{4} e^{x} + 12 \, x^{4} - 5 \, x^{3} + 4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 1.23
method | result | size |
default | \(-12 x^{2}+5 x -\frac {4}{x^{2}}-4 x^{3}-4 \,{\mathrm e}^{x} x^{2}\) | \(27\) |
risch | \(-12 x^{2}+5 x -\frac {4}{x^{2}}-4 x^{3}-4 \,{\mathrm e}^{x} x^{2}\) | \(27\) |
norman | \(\frac {-4+5 x^{3}-12 x^{4}-4 x^{5}-4 \,{\mathrm e}^{x} x^{4}}{x^{2}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 38, normalized size = 1.73 \begin {gather*} -4 \, x^{3} - 12 \, x^{2} - 4 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - 8 \, {\left (x - 1\right )} e^{x} + 5 \, x - \frac {4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.18, size = 25, normalized size = 1.14 \begin {gather*} 5\,x-x^2\,\left (4\,{\mathrm {e}}^x+12\right )-\frac {4}{x^2}-4\,x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 26, normalized size = 1.18 \begin {gather*} - 4 x^{3} - 4 x^{2} e^{x} - 12 x^{2} + 5 x - \frac {4}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________