Optimal. Leaf size=32 \[ \frac {6}{\left (4+32 e^4\right ) \left (5+\frac {4}{x}\right )}+\frac {5}{\frac {25}{4}-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 45, normalized size of antiderivative = 1.41, number of steps used = 4, number of rules used = 4, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {2 \left (2 \left (131+1000 e^4\right ) x+25 \left (5+64 e^4\right )\right )}{5 \left (1+8 e^4\right ) \left (-20 x^2+109 x+100\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {64 \left (19881 \left (131+1000 e^4\right )+11280 \left (119+1000 e^4\right ) x+1600 \left (131+1000 e^4\right ) x^2\right )}{\left (1+8 e^4\right ) \left (19881-1600 x^2\right )^2} \, dx,x,\frac {-4360-34880 e^4}{4 \left (400+3200 e^4\right )}+x\right )\\ &=\frac {64 \operatorname {Subst}\left (\int \frac {19881 \left (131+1000 e^4\right )+11280 \left (119+1000 e^4\right ) x+1600 \left (131+1000 e^4\right ) x^2}{\left (19881-1600 x^2\right )^2} \, dx,x,\frac {-4360-34880 e^4}{4 \left (400+3200 e^4\right )}+x\right )}{1+8 e^4}\\ &=\frac {2 \left (25 \left (5+64 e^4\right )+2 \left (131+1000 e^4\right ) x\right )}{5 \left (1+8 e^4\right ) \left (100+109 x-20 x^2\right )}-\frac {32 \operatorname {Subst}\left (\int 0 \, dx,x,\frac {-4360-34880 e^4}{4 \left (400+3200 e^4\right )}+x\right )}{19881 \left (1+8 e^4\right )}\\ &=\frac {2 \left (25 \left (5+64 e^4\right )+2 \left (131+1000 e^4\right ) x\right )}{5 \left (1+8 e^4\right ) \left (100+109 x-20 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 38, normalized size = 1.19 \begin {gather*} \frac {2 \left (\frac {10+80 e^4}{25-4 x}-\frac {3}{5 (4+5 x)}\right )}{1+8 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 42, normalized size = 1.31 \begin {gather*} -\frac {2 \, {\left (400 \, {\left (5 \, x + 4\right )} e^{4} + 262 \, x + 125\right )}}{5 \, {\left (20 \, x^{2} + 8 \, {\left (20 \, x^{2} - 109 \, x - 100\right )} e^{4} - 109 \, x - 100\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 36, normalized size = 1.12 \begin {gather*} -\frac {2 \, {\left (2000 \, x e^{4} + 262 \, x + 1600 \, e^{4} + 125\right )}}{5 \, {\left (20 \, x^{2} - 109 \, x - 100\right )} {\left (8 \, e^{4} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 36, normalized size = 1.12
method | result | size |
default | \(\frac {-\frac {2 \left (80 \,{\mathrm e}^{4}+10\right )}{4 x -25}-\frac {6}{5 \left (4+5 x \right )}}{8 \,{\mathrm e}^{4}+1}\) | \(36\) |
risch | \(\frac {\left (-5 \,{\mathrm e}^{4}-\frac {131}{200}\right ) x -4 \,{\mathrm e}^{4}-\frac {5}{16}}{x^{2} {\mathrm e}^{4}-\frac {109 x \,{\mathrm e}^{4}}{20}+\frac {x^{2}}{8}-5 \,{\mathrm e}^{4}-\frac {109 x}{160}-\frac {5}{8}}\) | \(43\) |
gosper | \(-\frac {2 \left (2000 x \,{\mathrm e}^{4}+1600 \,{\mathrm e}^{4}+262 x +125\right )}{5 \left (160 x^{2} {\mathrm e}^{4}-872 x \,{\mathrm e}^{4}+20 x^{2}-800 \,{\mathrm e}^{4}-109 x -100\right )}\) | \(45\) |
norman | \(\frac {-\frac {5 \left (10+128 \,{\mathrm e}^{4}\right )}{8 \,{\mathrm e}^{4}+1}-\frac {\left (2096+16000 \,{\mathrm e}^{4}\right ) x}{20 \left (8 \,{\mathrm e}^{4}+1\right )}}{20 x^{2}-109 x -100}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 45, normalized size = 1.41 \begin {gather*} -\frac {2 \, {\left (2 \, x {\left (1000 \, e^{4} + 131\right )} + 1600 \, e^{4} + 125\right )}}{5 \, {\left (20 \, x^{2} {\left (8 \, e^{4} + 1\right )} - 109 \, x {\left (8 \, e^{4} + 1\right )} - 800 \, e^{4} - 100\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 27, normalized size = 0.84 \begin {gather*} -\frac {6}{5\,\left (8\,{\mathrm {e}}^4+1\right )\,\left (5\,x+4\right )}-\frac {20}{4\,x-25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.67, size = 42, normalized size = 1.31 \begin {gather*} \frac {x \left (- 4000 e^{4} - 524\right ) - 3200 e^{4} - 250}{x^{2} \left (100 + 800 e^{4}\right ) + x \left (- 4360 e^{4} - 545\right ) - 4000 e^{4} - 500} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________