Optimal. Leaf size=22 \[ x \left (4 x-x \log \left (-x+\log \left (x-x^4\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x+7 x^2-4 x^4-7 x^5+\left (-8 x+8 x^4\right ) \log \left (x-x^4\right )+\left (-2 x^2+2 x^5+\left (2 x-2 x^4\right ) \log \left (x-x^4\right )\right ) \log \left (-x+\log \left (x-x^4\right )\right )}{x-x^4+\left (-1+x^3\right ) \log \left (x-x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x+7 x^2-4 x^4-7 x^5+\left (-8 x+8 x^4\right ) \log \left (x-x^4\right )+\left (-2 x^2+2 x^5+\left (2 x-2 x^4\right ) \log \left (x-x^4\right )\right ) \log \left (-x+\log \left (x-x^4\right )\right )}{\left (1-x^3\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx\\ &=\int \left (-\frac {x}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}-\frac {7 x^2}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {4 x^4}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {7 x^5}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {8 x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )}-2 x \log \left (-x+\log \left (x-x^4\right )\right )\right ) \, dx\\ &=-\left (2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx\right )+4 \int \frac {x^4}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx-7 \int \frac {x^2}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx+7 \int \frac {x^5}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx-\int \frac {x}{(-1+x) \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx\\ &=-\left (2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx\right )+4 \int \left (\frac {1}{3 (-1+x) \left (x-\log \left (x-x^4\right )\right )}+\frac {x}{x-\log \left (x-x^4\right )}+\frac {1-x}{3 \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx-7 \int \left (\frac {1}{3 (-1+x) \left (x-\log \left (x-x^4\right )\right )}+\frac {1+2 x}{3 \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx+7 \int \left (\frac {1}{3 (-1+x) \left (x-\log \left (x-x^4\right )\right )}+\frac {x^2}{x-\log \left (x-x^4\right )}+\frac {1+2 x}{3 \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx-\int \left (\frac {1}{3 (-1+x) \left (x-\log \left (x-x^4\right )\right )}+\frac {1-x}{3 \left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx\right )-\frac {1}{3} \int \frac {1-x}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {4}{3} \int \frac {1-x}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx-2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx+4 \int \frac {x}{x-\log \left (x-x^4\right )} \, dx+7 \int \frac {x^2}{x-\log \left (x-x^4\right )} \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {1}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}-\frac {x}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx\right )-\frac {1}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {4}{3} \int \left (\frac {1}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}-\frac {x}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx+\frac {4}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx-2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx+4 \int \frac {x}{x-\log \left (x-x^4\right )} \, dx+7 \int \frac {x^2}{x-\log \left (x-x^4\right )} \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx\\ &=-\left (\frac {1}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx\right )-\frac {1}{3} \int \frac {1}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {1}{3} \int \frac {x}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {4}{3} \int \frac {1}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx-\frac {4}{3} \int \frac {x}{\left (1+x+x^2\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx-2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx+4 \int \frac {x}{x-\log \left (x-x^4\right )} \, dx+7 \int \frac {x^2}{x-\log \left (x-x^4\right )} \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {2 i}{\sqrt {3} \left (-1+i \sqrt {3}-2 x\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {2 i}{\sqrt {3} \left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx\right )+\frac {1}{3} \int \left (\frac {1+\frac {i}{\sqrt {3}}}{\left (1-i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {1-\frac {i}{\sqrt {3}}}{\left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx-\frac {1}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {4}{3} \int \left (\frac {2 i}{\sqrt {3} \left (-1+i \sqrt {3}-2 x\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {2 i}{\sqrt {3} \left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx-\frac {4}{3} \int \left (\frac {1+\frac {i}{\sqrt {3}}}{\left (1-i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )}+\frac {1-\frac {i}{\sqrt {3}}}{\left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )}\right ) \, dx+\frac {4}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx-2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx+4 \int \frac {x}{x-\log \left (x-x^4\right )} \, dx+7 \int \frac {x^2}{x-\log \left (x-x^4\right )} \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx\\ &=-\left (\frac {1}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx\right )+\frac {4}{3} \int \frac {1}{(-1+x) \left (x-\log \left (x-x^4\right )\right )} \, dx-2 \int x \log \left (-x+\log \left (x-x^4\right )\right ) \, dx+4 \int \frac {x}{x-\log \left (x-x^4\right )} \, dx+7 \int \frac {x^2}{x-\log \left (x-x^4\right )} \, dx+8 \int \frac {x \log \left (x \left (1-x^3\right )\right )}{-x+\log \left (x-x^4\right )} \, dx-\frac {(2 i) \int \frac {1}{\left (-1+i \sqrt {3}-2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx}{3 \sqrt {3}}-\frac {(2 i) \int \frac {1}{\left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx}{3 \sqrt {3}}+\frac {(8 i) \int \frac {1}{\left (-1+i \sqrt {3}-2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx}{3 \sqrt {3}}+\frac {(8 i) \int \frac {1}{\left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx}{3 \sqrt {3}}+\frac {1}{9} \left (3-i \sqrt {3}\right ) \int \frac {1}{\left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx-\frac {1}{9} \left (4 \left (3-i \sqrt {3}\right )\right ) \int \frac {1}{\left (1+i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx+\frac {1}{9} \left (3+i \sqrt {3}\right ) \int \frac {1}{\left (1-i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx-\frac {1}{9} \left (4 \left (3+i \sqrt {3}\right )\right ) \int \frac {1}{\left (1-i \sqrt {3}+2 x\right ) \left (x-\log \left (x-x^4\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 24, normalized size = 1.09 \begin {gather*} 4 x^2-x^2 \log \left (-x+\log \left (x-x^4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 24, normalized size = 1.09 \begin {gather*} -x^{2} \log \left (-x + \log \left (-x^{4} + x\right )\right ) + 4 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 24, normalized size = 1.09 \begin {gather*} -x^{2} \log \left (-x + \log \left (-x^{4} + x\right )\right ) + 4 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-2 x^{4}+2 x \right ) \ln \left (-x^{4}+x \right )+2 x^{5}-2 x^{2}\right ) \ln \left (\ln \left (-x^{4}+x \right )-x \right )+\left (8 x^{4}-8 x \right ) \ln \left (-x^{4}+x \right )-7 x^{5}-4 x^{4}+7 x^{2}+x}{\left (x^{3}-1\right ) \ln \left (-x^{4}+x \right )-x^{4}+x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 31, normalized size = 1.41 \begin {gather*} -x^{2} \log \left (-x + \log \left (x^{2} + x + 1\right ) + \log \relax (x) + \log \left (-x + 1\right )\right ) + 4 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 20, normalized size = 0.91 \begin {gather*} -x^2\,\left (\ln \left (\ln \left (x-x^4\right )-x\right )-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.83, size = 17, normalized size = 0.77 \begin {gather*} - x^{2} \log {\left (- x + \log {\left (- x^{4} + x \right )} \right )} + 4 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________