Optimal. Leaf size=20 \[ \frac {e}{1-x+\log ^2(9) (3+\log (1+x))} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 24, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 3, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 12, 6686} \begin {gather*} \frac {e}{-x+\log ^2(9) \log (x+1)+1+3 \log ^2(9)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e \left (1+x-\log ^2(9)\right )}{(1+x) \left (1-x+3 \log ^2(9)+\log ^2(9) \log (1+x)\right )^2} \, dx\\ &=e \int \frac {1+x-\log ^2(9)}{(1+x) \left (1-x+3 \log ^2(9)+\log ^2(9) \log (1+x)\right )^2} \, dx\\ &=\frac {e}{1-x+3 \log ^2(9)+\log ^2(9) \log (1+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 24, normalized size = 1.20 \begin {gather*} \frac {e}{1-x+3 \log ^2(9)+\log ^2(9) \log (1+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 26, normalized size = 1.30 \begin {gather*} \frac {e}{4 \, \log \relax (3)^{2} \log \left (x + 1\right ) + 12 \, \log \relax (3)^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 26, normalized size = 1.30 \begin {gather*} \frac {e}{4 \, \log \relax (3)^{2} \log \left (x + 1\right ) + 12 \, \log \relax (3)^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 27, normalized size = 1.35
method | result | size |
norman | \(\frac {{\mathrm e}}{4 \ln \relax (3)^{2} \ln \left (x +1\right )+12 \ln \relax (3)^{2}-x +1}\) | \(27\) |
risch | \(\frac {{\mathrm e}}{4 \ln \relax (3)^{2} \ln \left (x +1\right )+12 \ln \relax (3)^{2}-x +1}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 26, normalized size = 1.30 \begin {gather*} \frac {e}{4 \, \log \relax (3)^{2} \log \left (x + 1\right ) + 12 \, \log \relax (3)^{2} - x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {4\,\mathrm {e}\,{\ln \relax (3)}^2-\mathrm {e}\,\left (x+1\right )}{\ln \left (x+1\right )\,\left (16\,{\ln \relax (3)}^4\,\left (6\,x+6\right )-4\,{\ln \relax (3)}^2\,\left (2\,x^2-2\right )\right )-x+16\,{\ln \relax (3)}^4\,\left (9\,x+9\right )-4\,{\ln \relax (3)}^2\,\left (6\,x^2-6\right )-x^2+x^3+16\,{\ln \left (x+1\right )}^2\,{\ln \relax (3)}^4\,\left (x+1\right )+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 24, normalized size = 1.20 \begin {gather*} \frac {e}{- x + 4 \log {\relax (3 )}^{2} \log {\left (x + 1 \right )} + 1 + 12 \log {\relax (3 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________