Optimal. Leaf size=27 \[ x \left (-e^x-\frac {3 x}{4}-x^2+\log (3)-\frac {5 x}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 40, normalized size of antiderivative = 1.48, number of steps used = 12, number of rules used = 8, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {12, 6742, 2176, 2194, 6688, 2306, 2309, 2178} \begin {gather*} -x^3-\frac {3 x^2}{4}-\frac {5 x^2}{\log (x)}+e^x-e^x (x+1)+\frac {1}{2} x \log (9) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2178
Rule 2194
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {10 x-20 x \log (x)+\left (e^x (-2-2 x)-3 x-6 x^2+2 \log (3)\right ) \log ^2(x)}{\log ^2(x)} \, dx\\ &=\frac {1}{2} \int \left (-2 e^x (1+x)+\frac {10 x-20 x \log (x)-3 x \log ^2(x)-6 x^2 \log ^2(x)+\log (9) \log ^2(x)}{\log ^2(x)}\right ) \, dx\\ &=\frac {1}{2} \int \frac {10 x-20 x \log (x)-3 x \log ^2(x)-6 x^2 \log ^2(x)+\log (9) \log ^2(x)}{\log ^2(x)} \, dx-\int e^x (1+x) \, dx\\ &=-e^x (1+x)+\frac {1}{2} \int \left (-3 x-6 x^2+\log (9)+\frac {10 x}{\log ^2(x)}-\frac {20 x}{\log (x)}\right ) \, dx+\int e^x \, dx\\ &=e^x-\frac {3 x^2}{4}-x^3-e^x (1+x)+\frac {1}{2} x \log (9)+5 \int \frac {x}{\log ^2(x)} \, dx-10 \int \frac {x}{\log (x)} \, dx\\ &=e^x-\frac {3 x^2}{4}-x^3-e^x (1+x)+\frac {1}{2} x \log (9)-\frac {5 x^2}{\log (x)}+10 \int \frac {x}{\log (x)} \, dx-10 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=e^x-\frac {3 x^2}{4}-x^3-e^x (1+x)-10 \text {Ei}(2 \log (x))+\frac {1}{2} x \log (9)-\frac {5 x^2}{\log (x)}+10 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=e^x-\frac {3 x^2}{4}-x^3-e^x (1+x)+\frac {1}{2} x \log (9)-\frac {5 x^2}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 35, normalized size = 1.30 \begin {gather*} -e^x x-\frac {3 x^2}{4}-x^3+\frac {1}{2} x \log (9)-\frac {5 x^2}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 36, normalized size = 1.33 \begin {gather*} -\frac {20 \, x^{2} + {\left (4 \, x^{3} + 3 \, x^{2} + 4 \, x e^{x} - 4 \, x \log \relax (3)\right )} \log \relax (x)}{4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 40, normalized size = 1.48 \begin {gather*} -\frac {4 \, x^{3} \log \relax (x) + 3 \, x^{2} \log \relax (x) + 4 \, x e^{x} \log \relax (x) - 4 \, x \log \relax (3) \log \relax (x) + 20 \, x^{2}}{4 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.11
method | result | size |
default | \(-{\mathrm e}^{x} x -\frac {3 x^{2}}{4}-x^{3}-\frac {5 x^{2}}{\ln \relax (x )}+x \ln \relax (3)\) | \(30\) |
risch | \(-{\mathrm e}^{x} x -\frac {3 x^{2}}{4}-x^{3}-\frac {5 x^{2}}{\ln \relax (x )}+x \ln \relax (3)\) | \(30\) |
norman | \(\frac {x \ln \relax (3) \ln \relax (x )-5 x^{2}-\frac {3 x^{2} \ln \relax (x )}{4}-x^{3} \ln \relax (x )-x \,{\mathrm e}^{x} \ln \relax (x )}{\ln \relax (x )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 41, normalized size = 1.52 \begin {gather*} -x^{3} - \frac {3}{4} \, x^{2} - {\left (x - 1\right )} e^{x} + x \log \relax (3) - 10 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) - e^{x} + 10 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.37, size = 30, normalized size = 1.11 \begin {gather*} -\frac {x\,\left (3\,x-\ln \left (81\right )+4\,{\mathrm {e}}^x+4\,x^2\right )}{4}-\frac {5\,x^2}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 27, normalized size = 1.00 \begin {gather*} - x^{3} - \frac {3 x^{2}}{4} - \frac {5 x^{2}}{\log {\relax (x )}} - x e^{x} + x \log {\relax (3 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________