Optimal. Leaf size=16 \[ e \left (3+\frac {e^3 x}{3+\frac {1}{x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 23, normalized size of antiderivative = 1.44, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {12, 27, 683} \begin {gather*} \frac {e^4 x}{3}+\frac {e^4}{9 (3 x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 683
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^4 \int \frac {2 x+3 x^2}{1+6 x+9 x^2} \, dx\\ &=e^4 \int \frac {2 x+3 x^2}{(1+3 x)^2} \, dx\\ &=e^4 \int \left (\frac {1}{3}-\frac {1}{3 (1+3 x)^2}\right ) \, dx\\ &=\frac {e^4 x}{3}+\frac {e^4}{9 (1+3 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 1.31 \begin {gather*} \frac {e^4 \left (2+6 x+9 x^2\right )}{9+27 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 21, normalized size = 1.31 \begin {gather*} \frac {{\left (9 \, x^{2} + 3 \, x + 1\right )} e^{4}}{9 \, {\left (3 \, x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 15, normalized size = 0.94 \begin {gather*} \frac {1}{9} \, {\left (3 \, x + \frac {1}{3 \, x + 1}\right )} e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.55, size = 14, normalized size = 0.88
method | result | size |
gosper | \(\frac {x^{2} {\mathrm e}^{4}}{3 x +1}\) | \(14\) |
norman | \(\frac {x^{2} {\mathrm e}^{3} {\mathrm e}}{3 x +1}\) | \(16\) |
risch | \(\frac {x \,{\mathrm e}^{4}}{3}+\frac {{\mathrm e}^{4}}{27 x +9}\) | \(16\) |
default | \({\mathrm e} \,{\mathrm e}^{3} \left (\frac {x}{3}+\frac {1}{27 x +9}\right )\) | \(19\) |
meijerg | \(\frac {{\mathrm e}^{4} \left (\frac {x \left (9 x +6\right )}{3 x +1}-2 \ln \left (3 x +1\right )\right )}{9}+\frac {2 \,{\mathrm e}^{4} \left (-\frac {3 x}{3 x +1}+\ln \left (3 x +1\right )\right )}{9}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 0.94 \begin {gather*} \frac {1}{9} \, {\left (3 \, x + \frac {1}{3 \, x + 1}\right )} e^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.30, size = 16, normalized size = 1.00 \begin {gather*} \frac {x\,{\mathrm {e}}^4}{3}+\frac {{\mathrm {e}}^4}{9\,\left (3\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.88 \begin {gather*} \frac {x e^{4}}{3} + \frac {e^{4}}{27 x + 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________