Optimal. Leaf size=23 \[ \left (x+x \left (-2+\left (5-\log \left (\log ^2(150 x \log (5))\right )\right )^2\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 30, normalized size of antiderivative = 1.30, number of steps used = 3, number of rules used = 3, integrand size = 115, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 12, 6687} \begin {gather*} x^2 \left (\log ^2\left (\log ^2(150 x \log (5))\right )-10 \log \left (\log ^2(150 x \log (5))\right )+24\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (24-10 \log \left (\log ^2(150 x \log (5))\right )+\log ^2\left (\log ^2(150 x \log (5))\right )\right ) \left (4 \left (-5+\log \left (\log ^2(150 x \log (5))\right )\right )+\log (150 x \log (5)) \left (24-10 \log \left (\log ^2(150 x \log (5))\right )+\log ^2\left (\log ^2(150 x \log (5))\right )\right )\right )}{\log (150 x \log (5))} \, dx\\ &=2 \int \frac {x \left (24-10 \log \left (\log ^2(150 x \log (5))\right )+\log ^2\left (\log ^2(150 x \log (5))\right )\right ) \left (4 \left (-5+\log \left (\log ^2(150 x \log (5))\right )\right )+\log (150 x \log (5)) \left (24-10 \log \left (\log ^2(150 x \log (5))\right )+\log ^2\left (\log ^2(150 x \log (5))\right )\right )\right )}{\log (150 x \log (5))} \, dx\\ &=x^2 \left (24-10 \log \left (\log ^2(150 x \log (5))\right )+\log ^2\left (\log ^2(150 x \log (5))\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 67, normalized size = 2.91 \begin {gather*} 576 x^2-480 x^2 \log \left (\log ^2(150 x \log (5))\right )+148 x^2 \log ^2\left (\log ^2(150 x \log (5))\right )-20 x^2 \log ^3\left (\log ^2(150 x \log (5))\right )+x^2 \log ^4\left (\log ^2(150 x \log (5))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 67, normalized size = 2.91 \begin {gather*} x^{2} \log \left (\log \left (150 \, x \log \relax (5)\right )^{2}\right )^{4} - 20 \, x^{2} \log \left (\log \left (150 \, x \log \relax (5)\right )^{2}\right )^{3} + 148 \, x^{2} \log \left (\log \left (150 \, x \log \relax (5)\right )^{2}\right )^{2} - 480 \, x^{2} \log \left (\log \left (150 \, x \log \relax (5)\right )^{2}\right ) + 576 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.17, size = 64, normalized size = 2.78 \begin {gather*} 16 \, x^{2} \log \left ({\left | \log \left (150 \, x \log \relax (5)\right ) \right |}\right )^{4} - 160 \, x^{2} \log \left ({\left | \log \left (150 \, x \log \relax (5)\right ) \right |}\right )^{3} + 592 \, x^{2} \log \left ({\left | \log \left (150 \, x \log \relax (5)\right ) \right |}\right )^{2} - 960 \, x^{2} \log \left ({\left | \log \left (150 \, x \log \relax (5)\right ) \right |}\right ) + 576 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.57, size = 1463, normalized size = 63.61
method | result | size |
risch | \(16 x^{2} \ln \left (\ln \left (150 x \ln \relax (5)\right )\right )^{4}-16 i x^{2} \left (\pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}-10 i\right ) \ln \left (\ln \left (150 x \ln \relax (5)\right )\right )^{3}-2 x^{2} \left (3 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}-12 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}+18 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{4}-12 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{5}+3 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{6}-60 i \pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )+120 i \pi \,\mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}-60 i \pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}-296\right ) \ln \left (\ln \left (150 x \ln \relax (5)\right )\right )^{2}+i x^{2} \left (\pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{6} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}-6 \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{5} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{4}+15 \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{5}-20 \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{6}+15 \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{7}-6 \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{8}+\pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{9}-180 i \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{4}+120 i \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}-30 i \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}+120 i \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{5}-30 i \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{6}-296 \pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )+592 \pi \,\mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}-296 \pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}+960 i\right ) \ln \left (\ln \left (150 x \ln \relax (5)\right )\right )+\frac {x^{2} \left (9216-592 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}+2368 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}-3552 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{4}+2368 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{5}+3840 i \pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}+\pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{8} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{4}-8 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{7} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{5}+28 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{6} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{6}-56 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{5} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{7}+70 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{8}-56 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{9}+28 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{10}-8 \pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{11}-40 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{9}-600 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{5}+3840 i \pi \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )-7680 i \pi \,\mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{2}+800 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{6}-600 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{7}+240 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right ) \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{8}-40 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{6} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{3}+240 i \pi ^{3} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )\right )^{5} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{4}+\pi ^{4} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{12}-592 \pi ^{2} \mathrm {csgn}\left (i \ln \left (150 x \ln \relax (5)\right )^{2}\right )^{6}\right )}{16}\) | \(1463\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.07, size = 86, normalized size = 3.74 \begin {gather*} 16 \, x^{2} \log \left (2 \, \log \relax (5) + \log \relax (3) + \log \relax (2) + \log \relax (x) + \log \left (\log \relax (5)\right )\right )^{4} - 160 \, x^{2} \log \left (2 \, \log \relax (5) + \log \relax (3) + \log \relax (2) + \log \relax (x) + \log \left (\log \relax (5)\right )\right )^{3} + 592 \, x^{2} \log \left (2 \, \log \relax (5) + \log \relax (3) + \log \relax (2) + \log \relax (x) + \log \left (\log \relax (5)\right )\right )^{2} - 480 \, x^{2} \log \left (\log \left (150 \, x \log \relax (5)\right )^{2}\right ) + 576 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 67, normalized size = 2.91 \begin {gather*} x^2\,{\ln \left ({\ln \left (150\,x\,\ln \relax (5)\right )}^2\right )}^4-20\,x^2\,{\ln \left ({\ln \left (150\,x\,\ln \relax (5)\right )}^2\right )}^3+148\,x^2\,{\ln \left ({\ln \left (150\,x\,\ln \relax (5)\right )}^2\right )}^2-480\,x^2\,\ln \left ({\ln \left (150\,x\,\ln \relax (5)\right )}^2\right )+576\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.68, size = 75, normalized size = 3.26 \begin {gather*} x^{2} \log {\left (\log {\left (150 x \log {\relax (5 )} \right )}^{2} \right )}^{4} - 20 x^{2} \log {\left (\log {\left (150 x \log {\relax (5 )} \right )}^{2} \right )}^{3} + 148 x^{2} \log {\left (\log {\left (150 x \log {\relax (5 )} \right )}^{2} \right )}^{2} - 480 x^{2} \log {\left (\log {\left (150 x \log {\relax (5 )} \right )}^{2} \right )} + 576 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________