Optimal. Leaf size=26 \[ \frac {4}{5+\left (2+e^{12+x^2}\right )^2+\frac {5}{x^2}-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {40 x+4 x^3-32 e^{12+x^2} x^5-16 e^{24+2 x^2} x^5}{25+90 x^2+81 x^4+8 e^{36+3 x^2} x^4+e^{48+4 x^2} x^4+e^{24+2 x^2} \left (10 x^2+34 x^4\right )+e^{12+x^2} \left (40 x^2+72 x^4\right )+\left (-10 x^2-18 x^4-8 e^{12+x^2} x^4-2 e^{24+2 x^2} x^4\right ) \log (x)+x^4 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x \left (10+x^2-4 e^{12+x^2} \left (2+e^{12+x^2}\right ) x^4\right )}{\left (5+\left (9+4 e^{12+x^2}+e^{24+2 x^2}\right ) x^2-x^2 \log (x)\right )^2} \, dx\\ &=4 \int \frac {x \left (10+x^2-4 e^{12+x^2} \left (2+e^{12+x^2}\right ) x^4\right )}{\left (5+\left (9+4 e^{12+x^2}+e^{24+2 x^2}\right ) x^2-x^2 \log (x)\right )^2} \, dx\\ &=4 \int \left (-\frac {4 x^3}{5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)}+\frac {x \left (10+21 x^2+36 x^4+8 e^{12+x^2} x^4-4 x^4 \log (x)\right )}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2}\right ) \, dx\\ &=4 \int \frac {x \left (10+21 x^2+36 x^4+8 e^{12+x^2} x^4-4 x^4 \log (x)\right )}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2} \, dx-16 \int \frac {x^3}{5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)} \, dx\\ &=4 \int \left (\frac {10 x}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2}+\frac {21 x^3}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2}+\frac {36 x^5}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2}+\frac {8 e^{12+x^2} x^5}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2}-\frac {4 x^5 \log (x)}{\left (-5-9 x^2-4 e^{12+x^2} x^2-e^{24+2 x^2} x^2+x^2 \log (x)\right )^2}\right ) \, dx-16 \int \frac {x^3}{5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)} \, dx\\ &=-\left (16 \int \frac {x^3}{5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)} \, dx\right )-16 \int \frac {x^5 \log (x)}{\left (-5-9 x^2-4 e^{12+x^2} x^2-e^{24+2 x^2} x^2+x^2 \log (x)\right )^2} \, dx+32 \int \frac {e^{12+x^2} x^5}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2} \, dx+40 \int \frac {x}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2} \, dx+84 \int \frac {x^3}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2} \, dx+144 \int \frac {x^5}{\left (5+9 x^2+4 e^{12+x^2} x^2+e^{24+2 x^2} x^2-x^2 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 40, normalized size = 1.54 \begin {gather*} \frac {4 x^2}{5+\left (9+4 e^{12+x^2}+e^{24+2 x^2}\right ) x^2-x^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 44, normalized size = 1.69 \begin {gather*} \frac {4 \, x^{2}}{x^{2} e^{\left (2 \, x^{2} + 24\right )} + 4 \, x^{2} e^{\left (x^{2} + 12\right )} - x^{2} \log \relax (x) + 9 \, x^{2} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.49, size = 44, normalized size = 1.69 \begin {gather*} \frac {8 \, x^{2}}{x^{2} e^{\left (2 \, x^{2} + 24\right )} + 4 \, x^{2} e^{\left (x^{2} + 12\right )} - x^{2} \log \relax (x) + 9 \, x^{2} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 45, normalized size = 1.73
method | result | size |
risch | \(\frac {4 x^{2}}{{\mathrm e}^{2 x^{2}+24} x^{2}+4 \,{\mathrm e}^{x^{2}+12} x^{2}-x^{2} \ln \relax (x )+9 x^{2}+5}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 44, normalized size = 1.69 \begin {gather*} \frac {4 \, x^{2}}{x^{2} e^{\left (2 \, x^{2} + 24\right )} + 4 \, x^{2} e^{\left (x^{2} + 12\right )} - x^{2} \log \relax (x) + 9 \, x^{2} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {40\,x-16\,x^5\,{\mathrm {e}}^{2\,x^2+24}-32\,x^5\,{\mathrm {e}}^{x^2+12}+4\,x^3}{{\mathrm {e}}^{2\,x^2+24}\,\left (34\,x^4+10\,x^2\right )-\ln \relax (x)\,\left (2\,x^4\,{\mathrm {e}}^{2\,x^2+24}+8\,x^4\,{\mathrm {e}}^{x^2+12}+10\,x^2+18\,x^4\right )+8\,x^4\,{\mathrm {e}}^{3\,x^2+36}+x^4\,{\mathrm {e}}^{4\,x^2+48}+x^4\,{\ln \relax (x)}^2+{\mathrm {e}}^{x^2+12}\,\left (72\,x^4+40\,x^2\right )+90\,x^2+81\,x^4+25} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 41, normalized size = 1.58 \begin {gather*} \frac {4 x^{2}}{4 x^{2} e^{x^{2} + 12} + x^{2} e^{2 x^{2} + 24} - x^{2} \log {\relax (x )} + 9 x^{2} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________