Optimal. Leaf size=32 \[ e^{\frac {1}{4} \left (5+x+\left (2 x-\log ^2(3)\right )^2\right ) \left (4 x^2-x \log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.45, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{4} \exp \left (\frac {1}{4} \left (20 x^2+4 x^3+16 x^4-16 x^3 \log ^2(3)+4 x^2 \log ^4(3)+\left (-5 x-x^2-4 x^3+4 x^2 \log ^2(3)-x \log ^4(3)\right ) \log (x)\right )\right ) \left (-5+39 x+8 x^2+64 x^3+\left (4 x-48 x^2\right ) \log ^2(3)+(-1+8 x) \log ^4(3)+\left (-5-2 x-12 x^2+8 x \log ^2(3)-\log ^4(3)\right ) \log (x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \exp \left (\frac {1}{4} \left (20 x^2+4 x^3+16 x^4-16 x^3 \log ^2(3)+4 x^2 \log ^4(3)+\left (-5 x-x^2-4 x^3+4 x^2 \log ^2(3)-x \log ^4(3)\right ) \log (x)\right )\right ) \left (-5+39 x+8 x^2+64 x^3+\left (4 x-48 x^2\right ) \log ^2(3)+(-1+8 x) \log ^4(3)+\left (-5-2 x-12 x^2+8 x \log ^2(3)-\log ^4(3)\right ) \log (x)\right ) \, dx\\ &=\frac {1}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \left (-5+39 x+8 x^2+64 x^3+\left (4 x-48 x^2\right ) \log ^2(3)+(-1+8 x) \log ^4(3)+\left (-5-2 x-12 x^2+8 x \log ^2(3)-\log ^4(3)\right ) \log (x)\right ) \, dx\\ &=\frac {1}{4} \int \left (-5 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right )+39 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x+8 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2+64 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^3-4 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x (-1+12 x) \log ^2(3)+\exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) (-1+8 x) \log ^4(3)+\exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \left (-5-12 x^2-\log ^4(3)-2 x \left (1-4 \log ^2(3)\right )\right ) \log (x)\right ) \, dx\\ &=\frac {1}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \left (-5-12 x^2-\log ^4(3)-2 x \left (1-4 \log ^2(3)\right )\right ) \log (x) \, dx-\frac {5}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \, dx+2 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2 \, dx+\frac {39}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \, dx+16 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^3 \, dx-\log ^2(3) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x (-1+12 x) \, dx+\frac {1}{4} \log ^4(3) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) (-1+8 x) \, dx\\ &=\frac {1}{4} \int \left (-12 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2 \log (x)+2 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \left (-1+4 \log ^2(3)\right ) \log (x)-5 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \left (1+\frac {\log ^4(3)}{5}\right ) \log (x)\right ) \, dx-\frac {5}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \, dx+2 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2 \, dx+\frac {39}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \, dx+16 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^3 \, dx-\log ^2(3) \int \left (-\exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x+12 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2\right ) \, dx+\frac {1}{4} \log ^4(3) \int \left (-\exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right )+8 \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x\right ) \, dx\\ &=-\left (\frac {5}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \, dx\right )+2 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2 \, dx-3 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2 \log (x) \, dx+\frac {39}{4} \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \, dx+16 \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^3 \, dx+\log ^2(3) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \, dx-\left (12 \log ^2(3)\right ) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x^2 \, dx-\frac {1}{4} \log ^4(3) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \, dx+\left (2 \log ^4(3)\right ) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \, dx+\frac {1}{2} \left (-1+4 \log ^2(3)\right ) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) x \log (x) \, dx+\frac {1}{4} \left (-5-\log ^4(3)\right ) \int \exp \left (\frac {1}{4} x \left (5+4 x^2+\log ^4(3)+x \left (1-4 \log ^2(3)\right )\right ) (4 x-\log (x))\right ) \log (x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 52, normalized size = 1.62 \begin {gather*} e^{x^2 \left (5+x+4 x^2-4 x \log ^2(3)+\log ^4(3)\right )} x^{-\frac {1}{4} x \left (5+x+4 x^2-4 x \log ^2(3)+\log ^4(3)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 63, normalized size = 1.97 \begin {gather*} e^{\left (x^{2} \log \relax (3)^{4} - 4 \, x^{3} \log \relax (3)^{2} + 4 \, x^{4} + x^{3} + 5 \, x^{2} - \frac {1}{4} \, {\left (x \log \relax (3)^{4} - 4 \, x^{2} \log \relax (3)^{2} + 4 \, x^{3} + x^{2} + 5 \, x\right )} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 70, normalized size = 2.19 \begin {gather*} e^{\left (x^{2} \log \relax (3)^{4} - \frac {1}{4} \, x \log \relax (3)^{4} \log \relax (x) - 4 \, x^{3} \log \relax (3)^{2} + x^{2} \log \relax (3)^{2} \log \relax (x) + 4 \, x^{4} - x^{3} \log \relax (x) + x^{3} - \frac {1}{4} \, x^{2} \log \relax (x) + 5 \, x^{2} - \frac {5}{4} \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 50, normalized size = 1.56
method | result | size |
risch | \(x^{-\frac {x \left (\ln \relax (3)^{4}-4 x \ln \relax (3)^{2}+4 x^{2}+x +5\right )}{4}} {\mathrm e}^{x^{2} \left (\ln \relax (3)^{4}-4 x \ln \relax (3)^{2}+4 x^{2}+x +5\right )}\) | \(50\) |
norman | \({\mathrm e}^{\frac {\left (-x \ln \relax (3)^{4}+4 x^{2} \ln \relax (3)^{2}-4 x^{3}-x^{2}-5 x \right ) \ln \relax (x )}{4}+x^{2} \ln \relax (3)^{4}-4 x^{3} \ln \relax (3)^{2}+4 x^{4}+x^{3}+5 x^{2}}\) | \(67\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.17, size = 70, normalized size = 2.19 \begin {gather*} e^{\left (x^{2} \log \relax (3)^{4} - \frac {1}{4} \, x \log \relax (3)^{4} \log \relax (x) - 4 \, x^{3} \log \relax (3)^{2} + x^{2} \log \relax (3)^{2} \log \relax (x) + 4 \, x^{4} - x^{3} \log \relax (x) + x^{3} - \frac {1}{4} \, x^{2} \log \relax (x) + 5 \, x^{2} - \frac {5}{4} \, x \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.78, size = 73, normalized size = 2.28 \begin {gather*} x^{x^2\,{\ln \relax (3)}^2-\frac {x^2}{4}-x^3}\,{\mathrm {e}}^{-\frac {5\,x\,\ln \relax (x)}{4}}\,{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{x^2\,{\ln \relax (3)}^4}\,{\mathrm {e}}^{-4\,x^3\,{\ln \relax (3)}^2}\,{\mathrm {e}}^{5\,x^2}\,{\mathrm {e}}^{4\,x^4}\,{\mathrm {e}}^{-\frac {x\,{\ln \relax (3)}^4\,\ln \relax (x)}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 66, normalized size = 2.06 \begin {gather*} e^{4 x^{4} - 4 x^{3} \log {\relax (3 )}^{2} + x^{3} + x^{2} \log {\relax (3 )}^{4} + 5 x^{2} + \left (- x^{3} - \frac {x^{2}}{4} + x^{2} \log {\relax (3 )}^{2} - \frac {5 x}{4} - \frac {x \log {\relax (3 )}^{4}}{4}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________