Optimal. Leaf size=28 \[ e^{\left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )^2} x \]
________________________________________________________________________________________
Rubi [F] time = 18.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{8 e^x}+2 e^{4 e^x} \log \left (\log \left (\frac {4-2 x-e^x x}{x}\right )\right )+\log ^2\left (\log \left (\frac {4-2 x-e^x x}{x}\right )\right )\right ) x \left (e^{4 e^x} \left (8+2 e^x x^2\right )+\left (-4+2 x+e^x x+e^{8 e^x} \left (8 e^{2 x} x^2+e^x \left (-32 x+16 x^2\right )\right )\right ) \log \left (\frac {4-2 x-e^x x}{x}\right )+\left (8+2 e^x x^2+e^{4 e^x} \left (8 e^{2 x} x^2+e^x \left (-32 x+16 x^2\right )\right ) \log \left (\frac {4-2 x-e^x x}{x}\right )\right ) \log \left (\log \left (\frac {4-2 x-e^x x}{x}\right )\right )\right )}{\left (-4 x+2 x^2+e^x x^2\right ) \log \left (\frac {4-2 x-e^x x}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (-2 \left (4+e^x x^2\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )-\left (-4+\left (2+e^x\right ) x\right ) \log \left (-2-e^x+\frac {4}{x}\right ) \left (1+8 e^{8 e^x+x} x+8 e^{4 e^x+x} x \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )\right )}{4-\left (2+e^x\right ) x} \, dx\\ &=\int \left (e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )+2 e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )+2 e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )+8 e^{e^{8 e^x}+4 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )-\frac {4 e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \left (-2-2 x+x^2\right ) \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x}\right ) \, dx\\ &=2 \int e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+2 \int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx-4 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \left (-2-2 x+x^2\right ) \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x} \, dx+8 \int e^{e^{8 e^x}+4 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right ) \, dx+\int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx\\ &=2 \int e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+2 \int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx-4 \int \left (-\frac {2 e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x}-\frac {2 e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x}+\frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x^2 \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x}\right ) \, dx+8 \int \left (e^{e^{8 e^x}+8 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )+e^{e^{8 e^x}+4 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right ) \, dx+\int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx\\ &=2 \int e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+2 \int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx-4 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x^2 \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x} \, dx+8 \int e^{e^{8 e^x}+8 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+8 \int e^{e^{8 e^x}+4 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx+8 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x} \, dx+8 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \left (e^{4 e^x}+\log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )\right )}{-4+2 x+e^x x} \, dx+\int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx\\ &=2 \int e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+2 \int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx-4 \int \left (\frac {e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x^2 \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )}{-4+2 x+e^x x}+\frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x^2 \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )}{-4+2 x+e^x x}\right ) \, dx+8 \int e^{e^{8 e^x}+8 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+8 \int e^{e^{8 e^x}+4 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx+8 \int \left (\frac {e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )}{-4+2 x+e^x x}+\frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )}{-4+2 x+e^x x}\right ) \, dx+8 \int \left (\frac {e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )}{-4+2 x+e^x x}+\frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )}{-4+2 x+e^x x}\right ) \, dx+\int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx\\ &=2 \int e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+2 \int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx-4 \int \frac {e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x^2 \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )}{-4+2 x+e^x x} \, dx-4 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x^2 \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )}{-4+2 x+e^x x} \, dx+8 \int e^{e^{8 e^x}+8 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx+8 \int \frac {e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )}{-4+2 x+e^x x} \, dx+8 \int \frac {e^{e^{8 e^x}+4 e^x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right )}{-4+2 x+e^x x} \, dx+8 \int e^{e^{8 e^x}+4 e^x+x+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right ) \, dx+8 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )}{-4+2 x+e^x x} \, dx+8 \int \frac {e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{-1+2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \log \left (\log \left (-2-e^x+\frac {4}{x}\right )\right )}{-4+2 x+e^x x} \, dx+\int e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 51, normalized size = 1.82 \begin {gather*} e^{e^{8 e^x}+\log ^2\left (\log \left (-2-e^x+\frac {4}{x}\right )\right )} x \log ^{2 e^{4 e^x}}\left (-2-e^x+\frac {4}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 50, normalized size = 1.79 \begin {gather*} e^{\left (2 \, e^{\left (4 \, e^{x}\right )} \log \left (\log \left (-\frac {x e^{x} + 2 \, x - 4}{x}\right )\right ) + \log \left (\log \left (-\frac {x e^{x} + 2 \, x - 4}{x}\right )\right )^{2} + e^{\left (8 \, e^{x}\right )} + \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.38, size = 281, normalized size = 10.04
method | result | size |
risch | \(\left (i \pi -\ln \relax (x )+\ln \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )+\mathrm {csgn}\left (\frac {i}{x}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )+\mathrm {csgn}\left (i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )^{2} \left (\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )-1\right )\right )^{2 \,{\mathrm e}^{4 \,{\mathrm e}^{x}}} x \,{\mathrm e}^{\ln \left (i \pi -\ln \relax (x )+\ln \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )+\mathrm {csgn}\left (\frac {i}{x}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )+\mathrm {csgn}\left (i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )^{2} \left (\mathrm {csgn}\left (\frac {i \left (-4+\left ({\mathrm e}^{x}+2\right ) x \right )}{x}\right )-1\right )\right )^{2}+{\mathrm e}^{8 \,{\mathrm e}^{x}}}\) | \(281\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.34, size = 52, normalized size = 1.86 \begin {gather*} x e^{\left (2 \, e^{\left (4 \, e^{x}\right )} \log \left (\log \left (-x e^{x} - 2 \, x + 4\right ) - \log \relax (x)\right ) + \log \left (\log \left (-x e^{x} - 2 \, x + 4\right ) - \log \relax (x)\right )^{2} + e^{\left (8 \, e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 50, normalized size = 1.79 \begin {gather*} x\,{\mathrm {e}}^{{\mathrm {e}}^{8\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{{\ln \left (\ln \left (-\frac {2\,x+x\,{\mathrm {e}}^x-4}{x}\right )\right )}^2}\,{\ln \left (-\frac {2\,x+x\,{\mathrm {e}}^x-4}{x}\right )}^{2\,{\mathrm {e}}^{4\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________