Optimal. Leaf size=30 \[ \frac {9 e^{2 x+2 \left (e^4+2 x+\log (1+(-1+x) x)\right )^2}}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 25.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (2 e^8+2 x+8 e^4 x+8 x^2+2 \left (2 e^4+4 x\right ) \log \left (1-x+x^2\right )+2 \log ^2\left (1-x+x^2\right )\right ) \left (-18+36 x+36 x^2+18 x^3+144 x^4+e^4 \left (36 x+72 x^3\right )+\left (36 x+72 x^3\right ) \log \left (1-x+x^2\right )\right )}{x^3-x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (2 e^8+2 x+8 e^4 x+8 x^2+2 \left (2 e^4+4 x\right ) \log \left (1-x+x^2\right )+2 \log ^2\left (1-x+x^2\right )\right ) \left (-18+36 x+36 x^2+18 x^3+144 x^4+e^4 \left (36 x+72 x^3\right )+\left (36 x+72 x^3\right ) \log \left (1-x+x^2\right )\right )}{x^3 \left (1-x+x^2\right )} \, dx\\ &=\int \left (\frac {18 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{1-x+x^2}-\frac {18 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x^3 \left (1-x+x^2\right )}+\frac {36 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x^2 \left (1-x+x^2\right )}+\frac {36 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x \left (1-x+x^2\right )}+\frac {144 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) x}{1-x+x^2}+\frac {36 \exp \left (4+2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1+2 x^2\right )}{x^2 \left (1-x+x^2\right )}+\frac {36 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1+2 x^2\right ) \log \left (1-x+x^2\right )}{x^2 \left (1-x+x^2\right )}\right ) \, dx\\ &=18 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{1-x+x^2} \, dx-18 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x^3 \left (1-x+x^2\right )} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x^2 \left (1-x+x^2\right )} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x \left (1-x+x^2\right )} \, dx+36 \int \frac {\exp \left (4+2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1+2 x^2\right )}{x^2 \left (1-x+x^2\right )} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1+2 x^2\right ) \log \left (1-x+x^2\right )}{x^2 \left (1-x+x^2\right )} \, dx+144 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) x}{1-x+x^2} \, dx\\ &=18 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \, dx-18 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x^3} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x^2} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x} \, dx+36 \int \left (\frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x^2}+\frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x}+\frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) (2-x)}{1-x+x^2}\right ) \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \left (1+2 x^2\right ) \log \left (1-x+x^2\right )}{x^2} \, dx+144 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) x \left (1-x+x^2\right )^{-1+4 e^4} \, dx\\ &=18 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \, dx-18 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x^3} \, dx+36 \int \frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x^2} \, dx+36 \int \frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right )}{x} \, dx+36 \int \frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+2 e^4 \log \left (1-x+x^2\right )+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) (2-x)}{1-x+x^2} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x^2} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x} \, dx+36 \int \left (2 \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right )+\frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right )}{x^2}\right ) \, dx+144 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) x \left (1-x+x^2\right )^{-1+4 e^4} \, dx\\ &=18 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \, dx-18 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x^3} \, dx+36 \int \frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{4 e^4}}{x^2} \, dx+36 \int \frac {\exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{4 e^4}}{x} \, dx+36 \int \exp \left (2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) (2-x) \left (1-x+x^2\right )^{-1+4 e^4} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x^2} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4}}{x} \, dx+36 \int \frac {\exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right )}{x^2} \, dx+72 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right ) \, dx+144 \int \exp \left (2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )\right ) x \left (1-x+x^2\right )^{-1+4 e^4} \, dx\\ &=18 \int e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \, dx-18 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}}{x^3} \, dx+36 \int \frac {e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{4 e^4}}{x^2} \, dx+36 \int \frac {e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{4 e^4}}{x} \, dx+36 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}}{x^2} \, dx+36 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}}{x} \, dx+36 \int \left (2 e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}-e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} x \left (1-x+x^2\right )^{-1+4 e^4}\right ) \, dx+36 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right )}{x^2} \, dx+72 \int e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right ) \, dx+144 \int e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} x \left (1-x+x^2\right )^{-1+4 e^4} \, dx\\ &=18 \int e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \, dx-18 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}}{x^3} \, dx+36 \int \frac {e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{4 e^4}}{x^2} \, dx+36 \int \frac {e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{4 e^4}}{x} \, dx+36 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}}{x^2} \, dx+36 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4}}{x} \, dx-36 \int e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} x \left (1-x+x^2\right )^{-1+4 e^4} \, dx+36 \int \frac {e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right )}{x^2} \, dx+72 \int e^{2 \left (2 \left (1+\frac {e^8}{2}\right )+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \, dx+72 \int e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{-1+4 e^4} \log \left (1-x+x^2\right ) \, dx+144 \int e^{2 \left (e^8+\left (1+4 e^4\right ) x+4 x^2+4 x \log \left (1-x+x^2\right )+\log ^2\left (1-x+x^2\right )\right )} x \left (1-x+x^2\right )^{-1+4 e^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 54, normalized size = 1.80 \begin {gather*} \frac {9 e^{2 \left (e^8+x+4 e^4 x+4 x^2+\log ^2\left (1-x+x^2\right )\right )} \left (1-x+x^2\right )^{4 \left (e^4+2 x\right )}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 54, normalized size = 1.80 \begin {gather*} \frac {9 \, e^{\left (8 \, x^{2} + 8 \, x e^{4} + 4 \, {\left (2 \, x + e^{4}\right )} \log \left (x^{2} - x + 1\right ) + 2 \, \log \left (x^{2} - x + 1\right )^{2} + 2 \, x + 2 \, e^{8}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {18 \, {\left (8 \, x^{4} + x^{3} + 2 \, x^{2} + 2 \, {\left (2 \, x^{3} + x\right )} e^{4} + 2 \, {\left (2 \, x^{3} + x\right )} \log \left (x^{2} - x + 1\right ) + 2 \, x - 1\right )} e^{\left (8 \, x^{2} + 8 \, x e^{4} + 4 \, {\left (2 \, x + e^{4}\right )} \log \left (x^{2} - x + 1\right ) + 2 \, \log \left (x^{2} - x + 1\right )^{2} + 2 \, x + 2 \, e^{8}\right )}}{x^{5} - x^{4} + x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 57, normalized size = 1.90
method | result | size |
risch | \(\frac {9 \left (x^{2}-x +1\right )^{4 \,{\mathrm e}^{4}+8 x} {\mathrm e}^{2 \ln \left (x^{2}-x +1\right )^{2}+2 \,{\mathrm e}^{8}+8 x \,{\mathrm e}^{4}+8 x^{2}+2 x}}{x^{2}}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.82, size = 62, normalized size = 2.07 \begin {gather*} \frac {9 \, e^{\left (8 \, x^{2} + 8 \, x e^{4} + 8 \, x \log \left (x^{2} - x + 1\right ) + 4 \, e^{4} \log \left (x^{2} - x + 1\right ) + 2 \, \log \left (x^{2} - x + 1\right )^{2} + 2 \, x + 2 \, e^{8}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.78, size = 57, normalized size = 1.90 \begin {gather*} \frac {9\,{\mathrm {e}}^{2\,{\mathrm {e}}^8}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{8\,x^2}\,{\mathrm {e}}^{2\,{\ln \left (x^2-x+1\right )}^2}\,{\mathrm {e}}^{8\,x\,{\mathrm {e}}^4}\,{\left (x^2-x+1\right )}^{8\,x+4\,{\mathrm {e}}^4}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.54, size = 56, normalized size = 1.87 \begin {gather*} \frac {9 e^{8 x^{2} + 2 x + 8 x e^{4} + 2 \left (4 x + 2 e^{4}\right ) \log {\left (x^{2} - x + 1 \right )} + 2 \log {\left (x^{2} - x + 1 \right )}^{2} + 2 e^{8}}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________