Optimal. Leaf size=22 \[ 1+\frac {\log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x+2 \log (x)+(x-\log (x)) \log \left (2 x^2\right )+(1-x) \log \left (2 x^2\right ) \log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{\left (x^3-2 x^2 \log (x)+x \log ^2(x)\right ) \log \left (2 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2 x+2 \log (x)+(x-\log (x)) \log \left (2 x^2\right )+(1-x) \log \left (2 x^2\right ) \log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x (x-\log (x))^2 \log \left (2 x^2\right )} \, dx\\ &=\int \left (\frac {-2+\log \left (2 x^2\right )}{x (x-\log (x)) \log \left (2 x^2\right )}-\frac {(-1+x) \log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x (x-\log (x))^2}\right ) \, dx\\ &=\int \frac {-2+\log \left (2 x^2\right )}{x (x-\log (x)) \log \left (2 x^2\right )} \, dx-\int \frac {(-1+x) \log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x (x-\log (x))^2} \, dx\\ &=\int \left (\frac {1}{x (x-\log (x))}-\frac {2}{x (x-\log (x)) \log \left (2 x^2\right )}\right ) \, dx-\int \left (\frac {\log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{(x-\log (x))^2}-\frac {\log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x (x-\log (x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {1}{x (x-\log (x)) \log \left (2 x^2\right )} \, dx\right )+\int \frac {1}{x (x-\log (x))} \, dx-\int \frac {\log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{(x-\log (x))^2} \, dx+\int \frac {\log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x (x-\log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 20, normalized size = 0.91 \begin {gather*} \frac {\log \left (\frac {x}{\log \left (2 x^2\right )}\right )}{x-\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 21, normalized size = 0.95 \begin {gather*} \frac {\log \left (\frac {x}{\log \relax (2) + 2 \, \log \relax (x)}\right )}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 28, normalized size = 1.27 \begin {gather*} \frac {x}{x - \log \relax (x)} - \frac {\log \left (\log \left (2 \, x^{2}\right )\right )}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.56, size = 878, normalized size = 39.91
method | result | size |
risch | \(-\frac {\ln \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )\right )}{x -\ln \relax (x )}+\frac {-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )^{2}-i \pi \,\mathrm {csgn}\left (\frac {i x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )-i \pi \mathrm {csgn}\left (\frac {x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )^{3}+i \pi \,\mathrm {csgn}\left (\frac {i x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {x}{\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \ln \relax (2)+4 i \ln \relax (x )}\right )^{3}+i \pi +2 \ln \relax (2)+2 x}{2 x -2 \ln \relax (x )}\) | \(878\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 21, normalized size = 0.95 \begin {gather*} \frac {x - \log \left (\log \relax (2) + 2 \, \log \relax (x)\right )}{x - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.74, size = 20, normalized size = 0.91 \begin {gather*} \frac {\ln \left (\frac {x}{\ln \left (2\,x^2\right )}\right )}{x-\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 15, normalized size = 0.68 \begin {gather*} \frac {\log {\left (\frac {x}{2 \log {\relax (x )} + \log {\relax (2 )}} \right )}}{x - \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________