Optimal. Leaf size=29 \[ 5 \log (x) \left (x (x-\log (-3+x))-\left (-1+x+\frac {1}{16} \log (\log (3))\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.46, antiderivative size = 110, normalized size of antiderivative = 3.79, number of steps used = 18, number of rules used = 13, integrand size = 99, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.131, Rules used = {1593, 6688, 2389, 2295, 2370, 2411, 43, 2351, 2317, 2391, 2357, 2316, 2315} \begin {gather*} -10 x+5 x (\log (x)+1)+\frac {5}{8} x (16-\log (\log (3)))+\frac {5}{8} x (8-\log (\log (3))) \log (x)-\frac {5}{8} x (8-\log (\log (3)))-5 (3-x) \log (x-3)-15 \log (3) \log (x-3)-15 \log (x-3) \log \left (\frac {x}{3}\right )+5 (3-x) \log (x-3) (\log (x)+1)-\frac {5}{256} (16-\log (\log (3)))^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 1593
Rule 2295
Rule 2315
Rule 2316
Rule 2317
Rule 2351
Rule 2357
Rule 2370
Rule 2389
Rule 2391
Rule 2411
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3840-8960 x+2560 x^2+\left (3840 x-1280 x^2\right ) \log (-3+x)+\left (-7680 x+1280 x^2+\left (3840 x-1280 x^2\right ) \log (-3+x)\right ) \log (x)+\left (-480+640 x-160 x^2+\left (480 x-160 x^2\right ) \log (x)\right ) \log (\log (3))+(15-5 x) \log ^2(\log (3))}{x (-768+256 x)} \, dx\\ &=\int \left (-5 \log (-3+x) (1+\log (x))-\frac {5 \log (x) (48+x (-8+\log (\log (3)))-3 \log (\log (3)))}{8 (-3+x)}-\frac {5 (-16+\log (\log (3))) (-16+32 x+\log (\log (3)))}{256 x}\right ) \, dx\\ &=-\left (\frac {5}{8} \int \frac {\log (x) (48+x (-8+\log (\log (3)))-3 \log (\log (3)))}{-3+x} \, dx\right )-5 \int \log (-3+x) (1+\log (x)) \, dx+\frac {1}{256} (5 (16-\log (\log (3)))) \int \frac {-16+32 x+\log (\log (3))}{x} \, dx\\ &=5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))-\frac {5}{8} \int \left (\frac {24 \log (x)}{-3+x}+\log (x) (-8+\log (\log (3)))\right ) \, dx+5 \int \left (-1-\frac {(3-x) \log (-3+x)}{x}\right ) \, dx+\frac {1}{256} (5 (16-\log (\log (3)))) \int \left (32+\frac {-16+\log (\log (3))}{x}\right ) \, dx\\ &=-5 x+5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))+\frac {5}{8} x (16-\log (\log (3)))-\frac {5}{256} \log (x) (16-\log (\log (3)))^2-5 \int \frac {(3-x) \log (-3+x)}{x} \, dx-15 \int \frac {\log (x)}{-3+x} \, dx+\frac {1}{8} (5 (8-\log (\log (3)))) \int \log (x) \, dx\\ &=-5 x-15 \log (3) \log (-3+x)+5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))-\frac {5}{8} x (8-\log (\log (3)))+\frac {5}{8} x \log (x) (8-\log (\log (3)))+\frac {5}{8} x (16-\log (\log (3)))-\frac {5}{256} \log (x) (16-\log (\log (3)))^2+5 \operatorname {Subst}\left (\int \frac {x \log (x)}{3+x} \, dx,x,-3+x\right )-15 \int \frac {\log \left (\frac {x}{3}\right )}{-3+x} \, dx\\ &=-5 x-15 \log (3) \log (-3+x)+5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))-\frac {5}{8} x (8-\log (\log (3)))+\frac {5}{8} x \log (x) (8-\log (\log (3)))+\frac {5}{8} x (16-\log (\log (3)))-\frac {5}{256} \log (x) (16-\log (\log (3)))^2+15 \text {Li}_2\left (1-\frac {x}{3}\right )+5 \operatorname {Subst}\left (\int \left (\log (x)-\frac {3 \log (x)}{3+x}\right ) \, dx,x,-3+x\right )\\ &=-5 x-15 \log (3) \log (-3+x)+5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))-\frac {5}{8} x (8-\log (\log (3)))+\frac {5}{8} x \log (x) (8-\log (\log (3)))+\frac {5}{8} x (16-\log (\log (3)))-\frac {5}{256} \log (x) (16-\log (\log (3)))^2+15 \text {Li}_2\left (1-\frac {x}{3}\right )+5 \operatorname {Subst}(\int \log (x) \, dx,x,-3+x)-15 \operatorname {Subst}\left (\int \frac {\log (x)}{3+x} \, dx,x,-3+x\right )\\ &=-10 x-5 (3-x) \log (-3+x)-15 \log (3) \log (-3+x)-15 \log (-3+x) \log \left (\frac {x}{3}\right )+5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))-\frac {5}{8} x (8-\log (\log (3)))+\frac {5}{8} x \log (x) (8-\log (\log (3)))+\frac {5}{8} x (16-\log (\log (3)))-\frac {5}{256} \log (x) (16-\log (\log (3)))^2+15 \text {Li}_2\left (1-\frac {x}{3}\right )+15 \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {x}{3}\right )}{x} \, dx,x,-3+x\right )\\ &=-10 x-5 (3-x) \log (-3+x)-15 \log (3) \log (-3+x)-15 \log (-3+x) \log \left (\frac {x}{3}\right )+5 x (1+\log (x))+5 (3-x) \log (-3+x) (1+\log (x))-\frac {5}{8} x (8-\log (\log (3)))+\frac {5}{8} x \log (x) (8-\log (\log (3)))+\frac {5}{8} x (16-\log (\log (3)))-\frac {5}{256} \log (x) (16-\log (\log (3)))^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.08, size = 89, normalized size = 3.07 \begin {gather*} -15 \log (3) \log (-3+x)-5 \log (x)+10 x \log (x)+15 \log \left (1-\frac {x}{3}\right ) \log (x)-5 x \log (-3+x) \log (x)+\frac {5}{8} \log (x) \log (\log (3))-\frac {5}{8} x \log (x) \log (\log (3))-\frac {5}{256} \log (x) \log ^2(\log (3))+15 \text {Li}_2\left (1-\frac {x}{3}\right )+15 \text {Li}_2\left (\frac {x}{3}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 35, normalized size = 1.21 \begin {gather*} -\frac {5}{8} \, {\left (x - 1\right )} \log \relax (x) \log \left (\log \relax (3)\right ) - \frac {5}{256} \, \log \relax (x) \log \left (\log \relax (3)\right )^{2} - 5 \, {\left (x \log \left (x - 3\right ) - 2 \, x + 1\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 36, normalized size = 1.24 \begin {gather*} -\frac {5}{8} \, x {\left (\log \left (\log \relax (3)\right ) - 16\right )} \log \relax (x) - 5 \, x \log \left (x - 3\right ) \log \relax (x) - \frac {5}{256} \, {\left (\log \left (\log \relax (3)\right )^{2} - 32 \, \log \left (\log \relax (3)\right ) + 256\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 39, normalized size = 1.34
method | result | size |
norman | \(\left (-5+\frac {5 \ln \left (\ln \relax (3)\right )}{8}-\frac {5 \ln \left (\ln \relax (3)\right )^{2}}{256}\right ) \ln \relax (x )+\left (10-\frac {5 \ln \left (\ln \relax (3)\right )}{8}\right ) x \ln \relax (x )-5 \ln \relax (x ) \ln \left (x -3\right ) x\) | \(39\) |
risch | \(-5 \ln \relax (x ) \ln \left (x -3\right ) x -\frac {5 \ln \relax (x ) \ln \left (\ln \relax (3)\right ) x}{8}+10 x \ln \relax (x )-\frac {5 \ln \relax (x ) \ln \left (\ln \relax (3)\right )^{2}}{256}+\frac {5 \ln \left (\ln \relax (3)\right ) \ln \relax (x )}{8}-5 \ln \relax (x )\) | \(44\) |
default | \(-15 \ln \left (x -3\right )+\frac {\left (2560-160 \ln \left (\ln \relax (3)\right )\right ) x \ln \relax (x )}{256}+5 \ln \left (x -3\right ) x -5 \ln \relax (x ) \ln \left (x -3\right ) x -\frac {5 \ln \relax (x ) \ln \left (\ln \relax (3)\right )^{2}}{256}-5 \ln \relax (x )+\frac {5 \ln \left (\ln \relax (3)\right ) \ln \relax (x )}{8}-5 \left (x -3\right ) \ln \left (x -3\right )-15\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.72, size = 132, normalized size = 4.55 \begin {gather*} -\frac {5}{8} \, x {\left (\log \left (\log \relax (3)\right ) - 16\right )} \log \relax (x) + \frac {5}{256} \, {\left (\log \left (x - 3\right ) - \log \relax (x)\right )} \log \left (\log \relax (3)\right )^{2} - \frac {5}{256} \, \log \left (x - 3\right ) \log \left (\log \relax (3)\right )^{2} + \frac {5}{8} \, x {\left (\log \left (\log \relax (3)\right ) - 24\right )} - 5 \, {\left (x \log \relax (x) - x + 3\right )} \log \left (x - 3\right ) - 5 \, {\left (x + 3 \, \log \left (x - 3\right )\right )} \log \left (x - 3\right ) + 15 \, \log \left (x - 3\right )^{2} - \frac {5}{8} \, {\left (x + 3 \, \log \left (x - 3\right )\right )} \log \left (\log \relax (3)\right ) - \frac {5}{8} \, {\left (\log \left (x - 3\right ) - \log \relax (x)\right )} \log \left (\log \relax (3)\right ) + \frac {5}{2} \, \log \left (x - 3\right ) \log \left (\log \relax (3)\right ) + 15 \, x + 15 \, \log \left (x - 3\right ) - 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.83, size = 32, normalized size = 1.10 \begin {gather*} -\frac {5\,\ln \relax (x)\,\left (256\,x\,\ln \left (x-3\right )-32\,\ln \left (\ln \relax (3)\right )-512\,x+{\ln \left (\ln \relax (3)\right )}^2+32\,x\,\ln \left (\ln \relax (3)\right )+256\right )}{256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.93, size = 97, normalized size = 3.34 \begin {gather*} \left (- 5 x \log {\relax (x )} - \frac {15}{4}\right ) \log {\left (x - 3 \right )} + \left (- \frac {5 x \log {\left (\log {\relax (3 )} \right )}}{8} + 10 x\right ) \log {\relax (x )} - \left (- \frac {5 \log {\left (\log {\relax (3 )} \right )}}{8} + \frac {5 \log {\left (\log {\relax (3 )} \right )}^{2}}{256} + 5\right ) \log {\relax (x )} + \frac {15 \log {\left (x + \frac {-6720 - 15 \log {\left (\log {\relax (3 )} \right )}^{2} + 480 \log {\left (\log {\relax (3 )} \right )}}{- 160 \log {\left (\log {\relax (3 )} \right )} + 5 \log {\left (\log {\relax (3 )} \right )}^{2} + 2240} \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________