Optimal. Leaf size=26 \[ e^{e^{-\frac {5}{2}+e+x^2+\frac {(1-x)^2+x}{\log (x)}}} \]
________________________________________________________________________________________
Rubi [F] time = 12.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) \left (-1+x-x^2+\left (-x+2 x^2\right ) \log (x)+2 x^2 \log ^2(x)\right )}{x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 \exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x+\frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) \left (-1+x-x^2\right )}{x \log ^2(x)}+\frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) (-1+2 x)}{\log (x)}\right ) \, dx\\ &=2 \int \exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x \, dx+\int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) \left (-1+x-x^2\right )}{x \log ^2(x)} \, dx+\int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) (-1+2 x)}{\log (x)} \, dx\\ &=2 \int \exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x \, dx+\int \left (\frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )}{\log ^2(x)}-\frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )}{x \log ^2(x)}-\frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x}{\log ^2(x)}\right ) \, dx+\int \left (-\frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )}{\log (x)}+\frac {2 \exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x}{\log (x)}\right ) \, dx\\ &=2 \int \exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x \, dx+2 \int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x}{\log (x)} \, dx+\int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )}{\log ^2(x)} \, dx-\int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )}{x \log ^2(x)} \, dx-\int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right ) x}{\log ^2(x)} \, dx-\int \frac {\exp \left (\exp \left (\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )+\frac {2-2 x+2 x^2+\left (-5+2 e+2 x^2\right ) \log (x)}{2 \log (x)}\right )}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 25, normalized size = 0.96 \begin {gather*} e^{e^{-\frac {5}{2}+e+x^2+\frac {1-x+x^2}{\log (x)}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 97, normalized size = 3.73 \begin {gather*} e^{\left (\frac {2 \, x^{2} + {\left (2 \, x^{2} + 2 \, e - 5\right )} \log \relax (x) + 2 \, e^{\left (\frac {2 \, x^{2} + {\left (2 \, x^{2} + 2 \, e - 5\right )} \log \relax (x) - 2 \, x + 2}{2 \, \log \relax (x)}\right )} \log \relax (x) - 2 \, x + 2}{2 \, \log \relax (x)} - \frac {2 \, x^{2} + {\left (2 \, x^{2} + 2 \, e - 5\right )} \log \relax (x) - 2 \, x + 2}{2 \, \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 36, normalized size = 1.38
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {2 x^{2} \ln \relax (x )+2 \,{\mathrm e} \ln \relax (x )+2 x^{2}-5 \ln \relax (x )-2 x +2}{2 \ln \relax (x )}}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.12, size = 28, normalized size = 1.08 \begin {gather*} e^{\left (e^{\left (x^{2} + \frac {x^{2}}{\log \relax (x)} - \frac {x}{\log \relax (x)} + \frac {1}{\log \relax (x)} + e - \frac {5}{2}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.95, size = 33, normalized size = 1.27 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-\frac {5}{2}}\,{\mathrm {e}}^{-\frac {x}{\ln \relax (x)}}\,{\mathrm {e}}^{\frac {1}{\ln \relax (x)}}\,{\mathrm {e}}^{\mathrm {e}}\,{\mathrm {e}}^{\frac {x^2}{\ln \relax (x)}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.86, size = 29, normalized size = 1.12 \begin {gather*} e^{e^{\frac {x^{2} - x + \frac {\left (2 x^{2} - 5 + 2 e\right ) \log {\relax (x )}}{2} + 1}{\log {\relax (x )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________