Optimal. Leaf size=23 \[ 15 \left (2+\frac {5}{\frac {2}{-5+x}+x}+x (x+\log (x))\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.56, antiderivative size = 320, normalized size of antiderivative = 13.91, number of steps used = 31, number of rules used = 14, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.203, Rules used = {6688, 12, 6742, 614, 618, 206, 638, 722, 738, 773, 632, 31, 800, 2295} \begin {gather*} \frac {150 x^3}{17}+\frac {720 (4-5 x) x^2}{17 \left (x^2-5 x+2\right )}-\frac {540 x^2}{17}-\frac {240 (4-5 x) x}{17 \left (x^2-5 x+2\right )}+\frac {570 (4-5 x)}{17 \left (x^2-5 x+2\right )}-\frac {1665 (5-2 x)}{17 \left (x^2-5 x+2\right )}+\frac {30 (4-5 x) x^4}{17 \left (x^2-5 x+2\right )}-\frac {285 (4-5 x) x^3}{17 \left (x^2-5 x+2\right )}+\frac {465 x}{17}+15 x \log (x)+\frac {360}{289} \left (289-65 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+5\right )-\frac {285}{289} \left (1445-349 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+5\right )+\frac {15}{289} \left (20519-4975 \sqrt {17}\right ) \log \left (-2 x-\sqrt {17}+5\right )+\frac {15}{289} \left (20519+4975 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+5\right )-\frac {285}{289} \left (1445+349 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+5\right )+\frac {360}{289} \left (289+65 \sqrt {17}\right ) \log \left (-2 x+\sqrt {17}+5\right )+\frac {2880 \tanh ^{-1}\left (\frac {5-2 x}{\sqrt {17}}\right )}{17 \sqrt {17}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 206
Rule 614
Rule 618
Rule 632
Rule 638
Rule 722
Rule 738
Rule 773
Rule 800
Rule 2295
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {15 \left (-111+38 x-16 x^2+48 x^3-19 x^4+2 x^5+\left (2-5 x+x^2\right )^2 \log (x)\right )}{\left (2-5 x+x^2\right )^2} \, dx\\ &=15 \int \frac {-111+38 x-16 x^2+48 x^3-19 x^4+2 x^5+\left (2-5 x+x^2\right )^2 \log (x)}{\left (2-5 x+x^2\right )^2} \, dx\\ &=15 \int \left (-\frac {111}{\left (2-5 x+x^2\right )^2}+\frac {38 x}{\left (2-5 x+x^2\right )^2}-\frac {16 x^2}{\left (2-5 x+x^2\right )^2}+\frac {48 x^3}{\left (2-5 x+x^2\right )^2}-\frac {19 x^4}{\left (2-5 x+x^2\right )^2}+\frac {2 x^5}{\left (2-5 x+x^2\right )^2}+\log (x)\right ) \, dx\\ &=15 \int \log (x) \, dx+30 \int \frac {x^5}{\left (2-5 x+x^2\right )^2} \, dx-240 \int \frac {x^2}{\left (2-5 x+x^2\right )^2} \, dx-285 \int \frac {x^4}{\left (2-5 x+x^2\right )^2} \, dx+570 \int \frac {x}{\left (2-5 x+x^2\right )^2} \, dx+720 \int \frac {x^3}{\left (2-5 x+x^2\right )^2} \, dx-1665 \int \frac {1}{\left (2-5 x+x^2\right )^2} \, dx\\ &=-15 x+\frac {570 (4-5 x)}{17 \left (2-5 x+x^2\right )}-\frac {1665 (5-2 x)}{17 \left (2-5 x+x^2\right )}-\frac {240 (4-5 x) x}{17 \left (2-5 x+x^2\right )}+\frac {720 (4-5 x) x^2}{17 \left (2-5 x+x^2\right )}-\frac {285 (4-5 x) x^3}{17 \left (2-5 x+x^2\right )}+\frac {30 (4-5 x) x^4}{17 \left (2-5 x+x^2\right )}+15 x \log (x)-\frac {30}{17} \int \frac {(16-15 x) x^3}{2-5 x+x^2} \, dx+\frac {285}{17} \int \frac {(12-10 x) x^2}{2-5 x+x^2} \, dx-\frac {720}{17} \int \frac {(8-5 x) x}{2-5 x+x^2} \, dx+\frac {960}{17} \int \frac {1}{2-5 x+x^2} \, dx-\frac {2850}{17} \int \frac {1}{2-5 x+x^2} \, dx+\frac {3330}{17} \int \frac {1}{2-5 x+x^2} \, dx\\ &=\frac {3345 x}{17}+\frac {570 (4-5 x)}{17 \left (2-5 x+x^2\right )}-\frac {1665 (5-2 x)}{17 \left (2-5 x+x^2\right )}-\frac {240 (4-5 x) x}{17 \left (2-5 x+x^2\right )}+\frac {720 (4-5 x) x^2}{17 \left (2-5 x+x^2\right )}-\frac {285 (4-5 x) x^3}{17 \left (2-5 x+x^2\right )}+\frac {30 (4-5 x) x^4}{17 \left (2-5 x+x^2\right )}+15 x \log (x)-\frac {30}{17} \int \left (-265-59 x-15 x^2+\frac {530-1207 x}{2-5 x+x^2}\right ) \, dx+\frac {285}{17} \int \left (-38-10 x+\frac {2 (38-85 x)}{2-5 x+x^2}\right ) \, dx-\frac {720}{17} \int \frac {10-17 x}{2-5 x+x^2} \, dx-\frac {1920}{17} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-5+2 x\right )+\frac {5700}{17} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-5+2 x\right )-\frac {6660}{17} \operatorname {Subst}\left (\int \frac {1}{17-x^2} \, dx,x,-5+2 x\right )\\ &=\frac {465 x}{17}-\frac {540 x^2}{17}+\frac {150 x^3}{17}+\frac {570 (4-5 x)}{17 \left (2-5 x+x^2\right )}-\frac {1665 (5-2 x)}{17 \left (2-5 x+x^2\right )}-\frac {240 (4-5 x) x}{17 \left (2-5 x+x^2\right )}+\frac {720 (4-5 x) x^2}{17 \left (2-5 x+x^2\right )}-\frac {285 (4-5 x) x^3}{17 \left (2-5 x+x^2\right )}+\frac {30 (4-5 x) x^4}{17 \left (2-5 x+x^2\right )}+\frac {2880 \tanh ^{-1}\left (\frac {5-2 x}{\sqrt {17}}\right )}{17 \sqrt {17}}+15 x \log (x)-\frac {30}{17} \int \frac {530-1207 x}{2-5 x+x^2} \, dx+\frac {570}{17} \int \frac {38-85 x}{2-5 x+x^2} \, dx+\frac {1}{289} \left (360 \left (289-65 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {5}{2}+\frac {\sqrt {17}}{2}+x} \, dx+\frac {1}{289} \left (360 \left (289+65 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {5}{2}-\frac {\sqrt {17}}{2}+x} \, dx\\ &=\frac {465 x}{17}-\frac {540 x^2}{17}+\frac {150 x^3}{17}+\frac {570 (4-5 x)}{17 \left (2-5 x+x^2\right )}-\frac {1665 (5-2 x)}{17 \left (2-5 x+x^2\right )}-\frac {240 (4-5 x) x}{17 \left (2-5 x+x^2\right )}+\frac {720 (4-5 x) x^2}{17 \left (2-5 x+x^2\right )}-\frac {285 (4-5 x) x^3}{17 \left (2-5 x+x^2\right )}+\frac {30 (4-5 x) x^4}{17 \left (2-5 x+x^2\right )}+\frac {2880 \tanh ^{-1}\left (\frac {5-2 x}{\sqrt {17}}\right )}{17 \sqrt {17}}+\frac {360}{289} \left (289-65 \sqrt {17}\right ) \log \left (5-\sqrt {17}-2 x\right )+\frac {360}{289} \left (289+65 \sqrt {17}\right ) \log \left (5+\sqrt {17}-2 x\right )+15 x \log (x)+\frac {1}{289} \left (15 \left (20519-4975 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {5}{2}+\frac {\sqrt {17}}{2}+x} \, dx-\frac {1}{289} \left (285 \left (1445-349 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {5}{2}+\frac {\sqrt {17}}{2}+x} \, dx-\frac {1}{289} \left (285 \left (1445+349 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {5}{2}-\frac {\sqrt {17}}{2}+x} \, dx+\frac {1}{289} \left (15 \left (20519+4975 \sqrt {17}\right )\right ) \int \frac {1}{-\frac {5}{2}-\frac {\sqrt {17}}{2}+x} \, dx\\ &=\frac {465 x}{17}-\frac {540 x^2}{17}+\frac {150 x^3}{17}+\frac {570 (4-5 x)}{17 \left (2-5 x+x^2\right )}-\frac {1665 (5-2 x)}{17 \left (2-5 x+x^2\right )}-\frac {240 (4-5 x) x}{17 \left (2-5 x+x^2\right )}+\frac {720 (4-5 x) x^2}{17 \left (2-5 x+x^2\right )}-\frac {285 (4-5 x) x^3}{17 \left (2-5 x+x^2\right )}+\frac {30 (4-5 x) x^4}{17 \left (2-5 x+x^2\right )}+\frac {2880 \tanh ^{-1}\left (\frac {5-2 x}{\sqrt {17}}\right )}{17 \sqrt {17}}+\frac {15}{289} \left (20519-4975 \sqrt {17}\right ) \log \left (5-\sqrt {17}-2 x\right )-\frac {285}{289} \left (1445-349 \sqrt {17}\right ) \log \left (5-\sqrt {17}-2 x\right )+\frac {360}{289} \left (289-65 \sqrt {17}\right ) \log \left (5-\sqrt {17}-2 x\right )+\frac {360}{289} \left (289+65 \sqrt {17}\right ) \log \left (5+\sqrt {17}-2 x\right )-\frac {285}{289} \left (1445+349 \sqrt {17}\right ) \log \left (5+\sqrt {17}-2 x\right )+\frac {15}{289} \left (20519+4975 \sqrt {17}\right ) \log \left (5+\sqrt {17}-2 x\right )+15 x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 1.09 \begin {gather*} 15 \left (x^2+\frac {5 (-5+x)}{2-5 x+x^2}+x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.91, size = 45, normalized size = 1.96 \begin {gather*} \frac {15 \, {\left (x^{4} - 5 \, x^{3} + 2 \, x^{2} + {\left (x^{3} - 5 \, x^{2} + 2 \, x\right )} \log \relax (x) + 5 \, x - 25\right )}}{x^{2} - 5 \, x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 26, normalized size = 1.13 \begin {gather*} 15 \, x^{2} + 15 \, x \log \relax (x) + \frac {75 \, {\left (x - 5\right )}}{x^{2} - 5 \, x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.26
method | result | size |
default | \(15 x^{2}-\frac {75 \left (5-x \right )}{x^{2}-5 x +2}+15 x \ln \relax (x )\) | \(29\) |
risch | \(15 x \ln \relax (x )+\frac {15 x^{4}-75 x^{3}+30 x^{2}+75 x -375}{x^{2}-5 x +2}\) | \(37\) |
norman | \(\frac {225 x -75 x^{3}+15 x^{4}+30 x \ln \relax (x )-75 x^{2} \ln \relax (x )+15 x^{3} \ln \relax (x )-435}{x^{2}-5 x +2}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 113, normalized size = 4.91 \begin {gather*} 15 \, x^{2} + 15 \, x \log \relax (x) - \frac {30 \, {\left (1975 \, x - 866\right )}}{17 \, {\left (x^{2} - 5 \, x + 2\right )}} + \frac {285 \, {\left (433 \, x - 190\right )}}{17 \, {\left (x^{2} - 5 \, x + 2\right )}} - \frac {720 \, {\left (95 \, x - 42\right )}}{17 \, {\left (x^{2} - 5 \, x + 2\right )}} + \frac {240 \, {\left (21 \, x - 10\right )}}{17 \, {\left (x^{2} - 5 \, x + 2\right )}} - \frac {570 \, {\left (5 \, x - 4\right )}}{17 \, {\left (x^{2} - 5 \, x + 2\right )}} + \frac {1665 \, {\left (2 \, x - 5\right )}}{17 \, {\left (x^{2} - 5 \, x + 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 27, normalized size = 1.17 \begin {gather*} \frac {75\,x-375}{x^2-5\,x+2}+15\,x\,\ln \relax (x)+15\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 1.04 \begin {gather*} 15 x^{2} + 15 x \log {\relax (x )} + \frac {75 x - 375}{x^{2} - 5 x + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________