Optimal. Leaf size=18 \[ \left (-1+\frac {85 x}{4}\right ) \left (-3+3 x+e^3 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 27, normalized size of antiderivative = 1.50, number of steps used = 2, number of rules used = 1, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {12} \begin {gather*} \frac {255 x^2}{4}+\frac {1}{340} e^3 (2-85 x)^2-\frac {267 x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left (-267+510 x+e^3 (-4+170 x)\right ) \, dx\\ &=\frac {1}{340} e^3 (2-85 x)^2-\frac {267 x}{4}+\frac {255 x^2}{4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 27, normalized size = 1.50 \begin {gather*} \frac {1}{4} \left (-267 x-4 e^3 x+255 x^2+85 e^3 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 22, normalized size = 1.22 \begin {gather*} \frac {255}{4} \, x^{2} + \frac {1}{4} \, {\left (85 \, x^{2} - 4 \, x\right )} e^{3} - \frac {267}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 22, normalized size = 1.22 \begin {gather*} \frac {255}{4} \, x^{2} + \frac {1}{4} \, {\left (85 \, x^{2} - 4 \, x\right )} e^{3} - \frac {267}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 1.00
method | result | size |
gosper | \(\frac {x \left (85 x \,{\mathrm e}^{3}-4 \,{\mathrm e}^{3}+255 x -267\right )}{4}\) | \(18\) |
norman | \(\left (-{\mathrm e}^{3}-\frac {267}{4}\right ) x +\left (\frac {85 \,{\mathrm e}^{3}}{4}+\frac {255}{4}\right ) x^{2}\) | \(20\) |
risch | \(\frac {85 x^{2} {\mathrm e}^{3}}{4}-x \,{\mathrm e}^{3}+\frac {255 x^{2}}{4}-\frac {267 x}{4}\) | \(22\) |
default | \(\frac {{\mathrm e}^{3} \left (85 x^{2}-4 x \right )}{4}+\frac {255 x^{2}}{4}-\frac {267 x}{4}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 22, normalized size = 1.22 \begin {gather*} \frac {255}{4} \, x^{2} + \frac {1}{4} \, {\left (85 \, x^{2} - 4 \, x\right )} e^{3} - \frac {267}{4} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.32, size = 18, normalized size = 1.00 \begin {gather*} x^2\,\left (\frac {85\,{\mathrm {e}}^3}{4}+\frac {255}{4}\right )-x\,\left ({\mathrm {e}}^3+\frac {267}{4}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.05, size = 22, normalized size = 1.22 \begin {gather*} x^{2} \left (\frac {255}{4} + \frac {85 e^{3}}{4}\right ) + x \left (- \frac {267}{4} - e^{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________