Optimal. Leaf size=25 \[ e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (\frac {x}{5 (-4-x)}\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} \left (4 x \log (x)+\left (\left (4 x+x^2\right ) \log \left (-\frac {x}{20+5 x}\right )+\left (8 x+2 x^2\right ) \log (x) \log \left (-\frac {x}{20+5 x}\right )\right ) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )\right )}{(20+5 x) \log \left (-\frac {x}{20+5 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {4 e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x \log (x)}{5 (4+x) \log \left (-\frac {x}{5 (4+x)}\right )}+\frac {1}{5} e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x (1+2 \log (x)) \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right )\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x (1+2 \log (x)) \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right ) \, dx+\frac {4}{5} \int \frac {e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x \log (x)}{(4+x) \log \left (-\frac {x}{5 (4+x)}\right )} \, dx\\ &=\frac {1}{5} \int \left (e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right )+2 e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x \log (x) \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right )\right ) \, dx+\frac {4}{5} \int \left (\frac {e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} \log (x)}{\log \left (-\frac {x}{5 (4+x)}\right )}-\frac {4 e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} \log (x)}{(4+x) \log \left (-\frac {x}{5 (4+x)}\right )}\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right ) \, dx+\frac {2}{5} \int e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} x \log (x) \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right ) \, dx+\frac {4}{5} \int \frac {e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} \log (x)}{\log \left (-\frac {x}{5 (4+x)}\right )} \, dx-\frac {16}{5} \int \frac {e^{\frac {1}{5} x^2 \log (x) \log \left (\log \left (-\frac {x}{20+5 x}\right )\right )} \log (x)}{(4+x) \log \left (-\frac {x}{5 (4+x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 21, normalized size = 0.84 \begin {gather*} x^{\frac {1}{5} x^2 \log \left (\log \left (-\frac {x}{5 (4+x)}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 18, normalized size = 0.72 \begin {gather*} e^{\left (\frac {1}{5} \, x^{2} \log \relax (x) \log \left (\log \left (-\frac {x}{5 \, {\left (x + 4\right )}}\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 18, normalized size = 0.72 \begin {gather*} e^{\left (\frac {1}{5} \, x^{2} \log \relax (x) \log \left (\log \left (-\frac {x}{5 \, {\left (x + 4\right )}}\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.80, size = 108, normalized size = 4.32
method | result | size |
risch | \(\left (-\ln \relax (5)+i \pi +\ln \relax (x )-\ln \left (4+x \right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i x}{4+x}\right ) \left (-\mathrm {csgn}\left (\frac {i x}{4+x}\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (\frac {i x}{4+x}\right )+\mathrm {csgn}\left (\frac {i}{4+x}\right )\right )}{2}+i \pi \mathrm {csgn}\left (\frac {i x}{4+x}\right )^{2} \left (\mathrm {csgn}\left (\frac {i x}{4+x}\right )-1\right )\right )^{\frac {x^{2} \ln \relax (x )}{5}}\) | \(108\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 24, normalized size = 0.96 \begin {gather*} e^{\left (\frac {1}{5} \, x^{2} \log \relax (x) \log \left (-\log \relax (5) + \log \relax (x) - \log \left (-x - 4\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.89, size = 20, normalized size = 0.80 \begin {gather*} {\mathrm {e}}^{\frac {x^2\,\ln \left (\ln \left (-\frac {x}{5\,x+20}\right )\right )\,\ln \relax (x)}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________