Optimal. Leaf size=14 \[ 10+\frac {4 e^{-58-4 x}}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 12, normalized size of antiderivative = 0.86, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 2197} \begin {gather*} \frac {4 e^{-4 x-58}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 \int \frac {e^{-58-4 x} (-2-4 x)}{x^3} \, dx\\ &=\frac {4 e^{-58-4 x}}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 12, normalized size = 0.86 \begin {gather*} \frac {4 e^{-58-4 x}}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 14, normalized size = 1.00 \begin {gather*} \frac {e^{\left (-4 \, x + 2 \, \log \relax (2) - 58\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 11, normalized size = 0.79 \begin {gather*} \frac {4 \, e^{\left (-4 \, x - 58\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 12, normalized size = 0.86
method | result | size |
risch | \(\frac {4 \,{\mathrm e}^{-4 x -58}}{x^{2}}\) | \(12\) |
gosper | \(\frac {4 \,{\mathrm e}^{-4 x -58}}{x^{2}}\) | \(15\) |
derivativedivides | \(\frac {4 \,{\mathrm e}^{-4 x -58}}{x^{2}}\) | \(15\) |
default | \(\frac {4 \,{\mathrm e}^{-4 x -58}}{x^{2}}\) | \(15\) |
norman | \(\frac {4 \,{\mathrm e}^{-4 x -58}}{x^{2}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 19, normalized size = 1.36 \begin {gather*} 64 \, e^{\left (-58\right )} \Gamma \left (-1, 4 \, x\right ) + 128 \, e^{\left (-58\right )} \Gamma \left (-2, 4 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 11, normalized size = 0.79 \begin {gather*} \frac {4\,{\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{-58}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.86 \begin {gather*} \frac {4 e^{- 4 x - 58}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________