Optimal. Leaf size=33 \[ e^{\frac {\left (4+\frac {e^4}{x}+\frac {4-x}{x}-x^2\right )^4}{65536}}+x \]
________________________________________________________________________________________
Rubi [A] time = 8.90, antiderivative size = 26, normalized size of antiderivative = 0.79, number of steps used = 4, number of rules used = 3, integrand size = 296, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {12, 14, 6706} \begin {gather*} e^{\frac {\left (-x^3+3 x+e^4+4\right )^4}{65536 x^4}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {16384 x^5+\exp \left (\frac {256+e^{16}+768 x+864 x^2+176 x^3-495 x^4-432 x^5-12 x^6+144 x^7+54 x^8-16 x^9-12 x^{10}+x^{12}+e^{12} \left (16+12 x-4 x^3\right )+e^8 \left (96+144 x+54 x^2-48 x^3-36 x^4+6 x^6\right )+e^4 \left (256+576 x+432 x^2-84 x^3-288 x^4-108 x^5+48 x^6+36 x^7-4 x^9\right )}{65536 x^4}\right ) \left (-256-e^{16}-576 x-432 x^2-44 x^3-108 x^5-6 x^6+108 x^7+54 x^8-20 x^9-18 x^{10}+2 x^{12}+e^{12} \left (-16-9 x+x^3\right )+e^8 \left (-96-108 x-27 x^2+12 x^3+3 x^6\right )+e^4 \left (-256-432 x-216 x^2+21 x^3-27 x^5+24 x^6+27 x^7-5 x^9\right )\right )}{x^5} \, dx}{16384}\\ &=\frac {\int \left (16384+\frac {e^{\frac {\left (4+e^4+3 x-x^3\right )^4}{65536 x^4}} \left (-4-e^4-3 x+x^3\right )^3 \left (4+e^4+2 x^3\right )}{x^5}\right ) \, dx}{16384}\\ &=x+\frac {\int \frac {e^{\frac {\left (4+e^4+3 x-x^3\right )^4}{65536 x^4}} \left (-4-e^4-3 x+x^3\right )^3 \left (4+e^4+2 x^3\right )}{x^5} \, dx}{16384}\\ &=e^{\frac {\left (4+e^4+3 x-x^3\right )^4}{65536 x^4}}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.11, size = 26, normalized size = 0.79 \begin {gather*} e^{\frac {\left (4+e^4+3 x-x^3\right )^4}{65536 x^4}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.71, size = 144, normalized size = 4.36 \begin {gather*} x + e^{\left (\frac {x^{12} - 12 \, x^{10} - 16 \, x^{9} + 54 \, x^{8} + 144 \, x^{7} - 12 \, x^{6} - 432 \, x^{5} - 495 \, x^{4} + 176 \, x^{3} + 864 \, x^{2} - 4 \, {\left (x^{3} - 3 \, x - 4\right )} e^{12} + 6 \, {\left (x^{6} - 6 \, x^{4} - 8 \, x^{3} + 9 \, x^{2} + 24 \, x + 16\right )} e^{8} - 4 \, {\left (x^{9} - 9 \, x^{7} - 12 \, x^{6} + 27 \, x^{5} + 72 \, x^{4} + 21 \, x^{3} - 108 \, x^{2} - 144 \, x - 64\right )} e^{4} + 768 \, x + e^{16} + 256}{65536 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 5.00, size = 180, normalized size = 5.45 \begin {gather*} {\left (x e^{4} + e^{\left (\frac {x^{12} - 12 \, x^{10} - 4 \, x^{9} e^{4} - 16 \, x^{9} + 54 \, x^{8} + 36 \, x^{7} e^{4} + 144 \, x^{7} + 6 \, x^{6} e^{8} + 48 \, x^{6} e^{4} - 12 \, x^{6} - 108 \, x^{5} e^{4} - 432 \, x^{5} - 36 \, x^{4} e^{8} - 288 \, x^{4} e^{4} + 261649 \, x^{4} - 4 \, x^{3} e^{12} - 48 \, x^{3} e^{8} - 84 \, x^{3} e^{4} + 176 \, x^{3} + 54 \, x^{2} e^{8} + 432 \, x^{2} e^{4} + 864 \, x^{2} + 12 \, x e^{12} + 144 \, x e^{8} + 576 \, x e^{4} + 768 \, x + e^{16} + 16 \, e^{12} + 96 \, e^{8} + 256 \, e^{4} + 256}{65536 \, x^{4}}\right )}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (-{\mathrm e}^{16}+\left (x^{3}-9 x -16\right ) {\mathrm e}^{12}+\left (3 x^{6}+12 x^{3}-27 x^{2}-108 x -96\right ) {\mathrm e}^{8}+\left (-5 x^{9}+27 x^{7}+24 x^{6}-27 x^{5}+21 x^{3}-216 x^{2}-432 x -256\right ) {\mathrm e}^{4}+2 x^{12}-18 x^{10}-20 x^{9}+54 x^{8}+108 x^{7}-6 x^{6}-108 x^{5}-44 x^{3}-432 x^{2}-576 x -256\right ) {\mathrm e}^{\frac {{\mathrm e}^{16}+\left (-4 x^{3}+12 x +16\right ) {\mathrm e}^{12}+\left (6 x^{6}-36 x^{4}-48 x^{3}+54 x^{2}+144 x +96\right ) {\mathrm e}^{8}+\left (-4 x^{9}+36 x^{7}+48 x^{6}-108 x^{5}-288 x^{4}-84 x^{3}+432 x^{2}+576 x +256\right ) {\mathrm e}^{4}+x^{12}-12 x^{10}-16 x^{9}+54 x^{8}+144 x^{7}-12 x^{6}-432 x^{5}-495 x^{4}+176 x^{3}+864 x^{2}+768 x +256}{65536 x^{4}}}+16384 x^{5}}{16384 x^{5}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 2.45, size = 183, normalized size = 5.55 \begin {gather*} x + e^{\left (\frac {1}{65536} \, x^{8} - \frac {3}{16384} \, x^{6} - \frac {1}{16384} \, x^{5} e^{4} - \frac {1}{4096} \, x^{5} + \frac {27}{32768} \, x^{4} + \frac {9}{16384} \, x^{3} e^{4} + \frac {9}{4096} \, x^{3} + \frac {3}{32768} \, x^{2} e^{8} + \frac {3}{4096} \, x^{2} e^{4} - \frac {3}{16384} \, x^{2} - \frac {27}{16384} \, x e^{4} - \frac {27}{4096} \, x - \frac {e^{12}}{16384 \, x} - \frac {3 \, e^{8}}{4096 \, x} - \frac {21 \, e^{4}}{16384 \, x} + \frac {11}{4096 \, x} + \frac {27 \, e^{8}}{32768 \, x^{2}} + \frac {27 \, e^{4}}{4096 \, x^{2}} + \frac {27}{2048 \, x^{2}} + \frac {3 \, e^{12}}{16384 \, x^{3}} + \frac {9 \, e^{8}}{4096 \, x^{3}} + \frac {9 \, e^{4}}{1024 \, x^{3}} + \frac {3}{256 \, x^{3}} + \frac {e^{16}}{65536 \, x^{4}} + \frac {e^{12}}{4096 \, x^{4}} + \frac {3 \, e^{8}}{2048 \, x^{4}} + \frac {e^{4}}{256 \, x^{4}} + \frac {1}{256 \, x^{4}} - \frac {9}{16384} \, e^{8} - \frac {9}{2048} \, e^{4} - \frac {495}{65536}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.46, size = 230, normalized size = 6.97 \begin {gather*} x+\frac {{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^2}}\right )}^{27/4096}\,{\left ({\mathrm {e}}^{x^2\,{\mathrm {e}}^4}\right )}^{3/4096}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^3}}\right )}^{9/1024}\,{\left ({\mathrm {e}}^{x^3\,{\mathrm {e}}^4}\right )}^{9/16384}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x^4}}\right )}^{1/256}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^8}{x^2}}\right )}^{27/32768}\,{\left ({\mathrm {e}}^{x^2\,{\mathrm {e}}^8}\right )}^{3/32768}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^8}{x^3}}\right )}^{9/4096}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^8}{x^4}}\right )}^{3/2048}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{12}}{x^3}}\right )}^{3/16384}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{12}}{x^4}}\right )}^{1/4096}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{16}}{x^4}}\right )}^{1/65536}\,{\left ({\mathrm {e}}^{1/x}\right )}^{11/4096}\,{\left ({\mathrm {e}}^{\frac {1}{x^2}}\right )}^{27/2048}\,{\left ({\mathrm {e}}^{\frac {1}{x^3}}\right )}^{3/256}\,{\left ({\mathrm {e}}^{x^3}\right )}^{9/4096}\,{\left ({\mathrm {e}}^{\frac {1}{x^4}}\right )}^{1/256}\,{\left ({\mathrm {e}}^{x^4}\right )}^{27/32768}\,{\left ({\mathrm {e}}^{x^8}\right )}^{1/65536}\,{\mathrm {e}}^{-\frac {495}{65536}}}{{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^4}{x}}\right )}^{21/16384}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^8}{x}}\right )}^{3/4096}\,{\left ({\mathrm {e}}^{x^5\,{\mathrm {e}}^4}\right )}^{1/16384}\,{\left ({\mathrm {e}}^{\frac {{\mathrm {e}}^{12}}{x}}\right )}^{1/16384}\,{\left ({\mathrm {e}}^{x^2}\right )}^{3/16384}\,{\left ({\mathrm {e}}^{x^5}\right )}^{1/4096}\,{\left ({\mathrm {e}}^{x^6}\right )}^{3/16384}\,{\left ({\mathrm {e}}^{x\,{\mathrm {e}}^4}\right )}^{27/16384}\,{\left ({\mathrm {e}}^{{\mathrm {e}}^4}\right )}^{9/2048}\,{\left ({\mathrm {e}}^{{\mathrm {e}}^8}\right )}^{9/16384}\,{\left ({\mathrm {e}}^x\right )}^{27/4096}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.98, size = 175, normalized size = 5.30 \begin {gather*} x + e^{\frac {\frac {x^{12}}{65536} - \frac {3 x^{10}}{16384} - \frac {x^{9}}{4096} + \frac {27 x^{8}}{32768} + \frac {9 x^{7}}{4096} - \frac {3 x^{6}}{16384} - \frac {27 x^{5}}{4096} - \frac {495 x^{4}}{65536} + \frac {11 x^{3}}{4096} + \frac {27 x^{2}}{2048} + \frac {3 x}{256} + \frac {\left (- 4 x^{3} + 12 x + 16\right ) e^{12}}{65536} + \frac {\left (6 x^{6} - 36 x^{4} - 48 x^{3} + 54 x^{2} + 144 x + 96\right ) e^{8}}{65536} + \frac {\left (- 4 x^{9} + 36 x^{7} + 48 x^{6} - 108 x^{5} - 288 x^{4} - 84 x^{3} + 432 x^{2} + 576 x + 256\right ) e^{4}}{65536} + \frac {1}{256} + \frac {e^{16}}{65536}}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________