Optimal. Leaf size=34 \[ -5+\frac {2 x}{1-e^{-\frac {x}{\frac {1}{e^9}-x}+\log (2) \log (3)}-x} \]
________________________________________________________________________________________
Rubi [F] time = 11.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-4 e^9 x+2 e^{18} x^2+\exp \left (\frac {e^9 x+\left (-1+e^9 x\right ) \log (2) \log (3)}{-1+e^9 x}\right ) \left (-2+2 e^9 x-2 e^{18} x^2\right )}{1-2 x+x^2+\exp \left (\frac {2 \left (e^9 x+\left (-1+e^9 x\right ) \log (2) \log (3)\right )}{-1+e^9 x}\right ) \left (1-2 e^9 x+e^{18} x^2\right )+e^9 \left (-2 x+4 x^2-2 x^3\right )+e^{18} \left (x^2-2 x^3+x^4\right )+\exp \left (\frac {e^9 x+\left (-1+e^9 x\right ) \log (2) \log (3)}{-1+e^9 x}\right ) \left (-2+2 x+e^9 \left (4 x-4 x^2\right )+e^{18} \left (-2 x^2+2 x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1-e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}-2 e^9 x+e^{9+\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)} x+e^{18} x^2-e^{18+\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)} x^2\right )}{\left (1-e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}-x\right )^2 \left (1-e^9 x\right )^2} \, dx\\ &=2 \int \frac {1-e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}-2 e^9 x+e^{9+\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)} x+e^{18} x^2-e^{18+\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)} x^2}{\left (1-e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}-x\right )^2 \left (1-e^9 x\right )^2} \, dx\\ &=2 \int \left (-\frac {1-e^9 x+e^{18} x^2}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right ) \left (-1+e^9 x\right )^2}+\frac {x \left (1-e^9-e^9 x+e^{18} x^2\right )}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2 \left (-1+e^9 x\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {1-e^9 x+e^{18} x^2}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right ) \left (-1+e^9 x\right )^2} \, dx\right )+2 \int \frac {x \left (1-e^9-e^9 x+e^{18} x^2\right )}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2 \left (-1+e^9 x\right )^2} \, dx\\ &=2 \int \left (\frac {1}{e^9 \left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2}+\frac {x}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2}-\frac {-1+e^9}{e^9 \left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2 \left (-1+e^9 x\right )^2}-\frac {-2+e^9}{e^9 \left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2 \left (-1+e^9 x\right )}\right ) \, dx-2 \int \left (\frac {1}{-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x}+\frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right ) \left (-1+e^9 x\right )^2}+\frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right ) \left (-1+e^9 x\right )}\right ) \, dx\\ &=2 \int \frac {x}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2} \, dx-2 \int \frac {1}{-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x} \, dx-2 \int \frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right ) \left (-1+e^9 x\right )^2} \, dx-2 \int \frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right ) \left (-1+e^9 x\right )} \, dx+\frac {2 \int \frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2} \, dx}{e^9}-\frac {\left (2 \left (-2+e^9\right )\right ) \int \frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2 \left (-1+e^9 x\right )} \, dx}{e^9}-\frac {\left (2 \left (-1+e^9\right )\right ) \int \frac {1}{\left (-1+e^{\frac {e^9 x}{-1+e^9 x}+\log (2) \log (3)}+x\right )^2 \left (-1+e^9 x\right )^2} \, dx}{e^9}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 26, normalized size = 0.76 \begin {gather*} -\frac {2 x}{-1+e^{1+\frac {1}{-1+e^9 x}+\log (2) \log (3)}+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 34, normalized size = 1.00 \begin {gather*} -\frac {2 \, x}{x + e^{\left (\frac {{\left (x e^{9} - 1\right )} \log \relax (3) \log \relax (2) + x e^{9}}{x e^{9} - 1}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 8.40, size = 27, normalized size = 0.79 \begin {gather*} -\frac {2 \, x}{x + e^{\left (\log \relax (3) \log \relax (2) + \frac {x e^{9}}{x e^{9} - 1}\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 3.44, size = 38, normalized size = 1.12
method | result | size |
risch | \(-\frac {2 x}{x +{\mathrm e}^{\frac {\ln \relax (2) \ln \relax (3) {\mathrm e}^{9} x -\ln \relax (2) \ln \relax (3)+x \,{\mathrm e}^{9}}{x \,{\mathrm e}^{9}-1}}-1}\) | \(38\) |
norman | \(\frac {2 x -2 x^{2} {\mathrm e}^{9}}{\left (x +{\mathrm e}^{\frac {\left (x \,{\mathrm e}^{9}-1\right ) \ln \relax (2) \ln \relax (3)+x \,{\mathrm e}^{9}}{x \,{\mathrm e}^{9}-1}}-1\right ) \left (x \,{\mathrm e}^{9}-1\right )}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.09, size = 24, normalized size = 0.71 \begin {gather*} -\frac {2 \, x}{2^{\log \relax (3)} e^{\left (\frac {1}{x e^{9} - 1} + 1\right )} + x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.74, size = 26, normalized size = 0.76 \begin {gather*} -\frac {2\,x}{x+2^{\ln \relax (3)}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^9}{x\,{\mathrm {e}}^9-1}}-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 34, normalized size = 1.00 \begin {gather*} - \frac {2 x}{x + e^{\frac {x e^{9} + \left (x e^{9} - 1\right ) \log {\relax (2 )} \log {\relax (3 )}}{x e^{9} - 1}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________