Optimal. Leaf size=12 \[ \log ^2\left (\frac {e^{4 x}}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 12, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {43, 6686} \begin {gather*} \log ^2\left (\frac {e^{4 x}}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log ^2\left (\frac {e^{4 x}}{x^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.03, size = 44, normalized size = 3.67 \begin {gather*} \log ^2\left (\frac {1}{x^2}\right )+4 \log \left (\frac {1}{x^2}\right ) \log (x)-4 \left (4 x (x-\log (x))+\log \left (\frac {e^{4 x}}{x^2}\right ) (-2 x+\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 11, normalized size = 0.92 \begin {gather*} \log \left (\frac {e^{\left (4 \, x\right )}}{x^{2}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 19, normalized size = 1.58 \begin {gather*} 16 \, x^{2} - 8 \, x \log \left (x^{2}\right ) + \log \left (x^{2}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 12, normalized size = 1.00
method | result | size |
norman | \(\ln \left (\frac {{\mathrm e}^{4 x}}{x^{2}}\right )^{2}\) | \(12\) |
default | \(-4 \ln \left (\frac {{\mathrm e}^{4 x}}{x^{2}}\right ) \ln \relax (x )+8 \ln \left (\frac {{\mathrm e}^{4 x}}{x^{2}}\right ) x -4 \ln \relax (x )^{2}+16 x \ln \relax (x )-16 x^{2}\) | \(43\) |
risch | \(4 \ln \relax (x )^{2}-16 x^{2}+\left (32 x -16 \ln \relax (x )\right ) \ln \left ({\mathrm e}^{x}\right )-4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )-4 i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )-4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{3}+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )^{3}-4 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-4 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{3}-4 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{3}-4 i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )^{3}+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{3}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 i \pi \ln \relax (x ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-4 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+8 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{2}+2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-4 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}-2 i \pi \ln \relax (x ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{2}+4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{2}+4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{2 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x}\right )^{2}+4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{3 x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{4 x}\right )^{2}+4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{4 x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )^{2}+4 i \pi x \,\mathrm {csgn}\left (\frac {i}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{4 x}}{x^{2}}\right )^{2}-8 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )\) | \(805\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 36, normalized size = 3.00 \begin {gather*} -16 \, x^{2} + 16 \, x \log \relax (x) - 4 \, \log \relax (x)^{2} + 4 \, {\left (2 \, x - \log \relax (x)\right )} \log \left (\frac {e^{\left (4 \, x\right )}}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 10, normalized size = 0.83 \begin {gather*} {\left (4\,x+\ln \left (\frac {1}{x^2}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 10, normalized size = 0.83 \begin {gather*} \log {\left (\frac {e^{4 x}}{x^{2}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________