Optimal. Leaf size=30 \[ \frac {e^{-e^x+x}}{5 (4+2 x) \left (1+x-x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-e^x+x} \left (-1+5 x+2 x^2-x^3+e^x \left (-2-3 x+x^2+x^3\right )\right )}{(20+10 x) \left (2+5 x-5 x^3+x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^{-e^x+x}}{10 \left (-2-3 x+x^2+x^3\right )^2}+\frac {e^{-e^x+x} x}{2 \left (-2-3 x+x^2+x^3\right )^2}+\frac {e^{-e^x+x} x^2}{5 \left (-2-3 x+x^2+x^3\right )^2}-\frac {e^{-e^x+x} x^3}{10 \left (-2-3 x+x^2+x^3\right )^2}+\frac {e^{-e^x+2 x}}{10 \left (-2-3 x+x^2+x^3\right )}\right ) \, dx\\ &=-\left (\frac {1}{10} \int \frac {e^{-e^x+x}}{\left (-2-3 x+x^2+x^3\right )^2} \, dx\right )-\frac {1}{10} \int \frac {e^{-e^x+x} x^3}{\left (-2-3 x+x^2+x^3\right )^2} \, dx+\frac {1}{10} \int \frac {e^{-e^x+2 x}}{-2-3 x+x^2+x^3} \, dx+\frac {1}{5} \int \frac {e^{-e^x+x} x^2}{\left (-2-3 x+x^2+x^3\right )^2} \, dx+\frac {1}{2} \int \frac {e^{-e^x+x} x}{\left (-2-3 x+x^2+x^3\right )^2} \, dx\\ &=-\left (\frac {1}{10} \int \left (\frac {e^{-e^x+x}}{25 (2+x)^2}+\frac {2 e^{-e^x+x}}{25 (2+x)}+\frac {e^{-e^x+x} (2-x)}{5 \left (-1-x+x^2\right )^2}+\frac {e^{-e^x+x} (5-2 x)}{25 \left (-1-x+x^2\right )}\right ) \, dx\right )+\frac {1}{10} \int \left (\frac {e^{-e^x+2 x}}{5 (2+x)}+\frac {e^{-e^x+2 x} (3-x)}{5 \left (-1-x+x^2\right )}\right ) \, dx-\frac {1}{10} \int \left (-\frac {8 e^{-e^x+x}}{25 (2+x)^2}-\frac {4 e^{-e^x+x}}{25 (2+x)}+\frac {e^{-e^x+x} x}{5 \left (-1-x+x^2\right )^2}+\frac {4 e^{-e^x+x} (-1+x)}{25 \left (-1-x+x^2\right )}\right ) \, dx+\frac {1}{5} \int \left (\frac {4 e^{-e^x+x}}{25 (2+x)^2}+\frac {4 e^{-e^x+x}}{25 (2+x)}+\frac {e^{-e^x+x}}{5 \left (-1-x+x^2\right )^2}-\frac {4 e^{-e^x+x} (-2+x)}{25 \left (-1-x+x^2\right )}\right ) \, dx+\frac {1}{2} \int \left (-\frac {2 e^{-e^x+x}}{25 (2+x)^2}-\frac {3 e^{-e^x+x}}{25 (2+x)}+\frac {e^{-e^x+x} (-1+x)}{5 \left (-1-x+x^2\right )^2}+\frac {e^{-e^x+x} (-7+3 x)}{25 \left (-1-x+x^2\right )}\right ) \, dx\\ &=-\left (\frac {1}{250} \int \frac {e^{-e^x+x}}{(2+x)^2} \, dx\right )-\frac {1}{250} \int \frac {e^{-e^x+x} (5-2 x)}{-1-x+x^2} \, dx-\frac {1}{125} \int \frac {e^{-e^x+x}}{2+x} \, dx+\frac {2}{125} \int \frac {e^{-e^x+x}}{2+x} \, dx-\frac {2}{125} \int \frac {e^{-e^x+x} (-1+x)}{-1-x+x^2} \, dx+\frac {1}{50} \int \frac {e^{-e^x+2 x}}{2+x} \, dx-\frac {1}{50} \int \frac {e^{-e^x+x} (2-x)}{\left (-1-x+x^2\right )^2} \, dx-\frac {1}{50} \int \frac {e^{-e^x+x} x}{\left (-1-x+x^2\right )^2} \, dx+\frac {1}{50} \int \frac {e^{-e^x+2 x} (3-x)}{-1-x+x^2} \, dx+\frac {1}{50} \int \frac {e^{-e^x+x} (-7+3 x)}{-1-x+x^2} \, dx+2 \left (\frac {4}{125} \int \frac {e^{-e^x+x}}{(2+x)^2} \, dx\right )+\frac {4}{125} \int \frac {e^{-e^x+x}}{2+x} \, dx-\frac {4}{125} \int \frac {e^{-e^x+x} (-2+x)}{-1-x+x^2} \, dx-\frac {1}{25} \int \frac {e^{-e^x+x}}{(2+x)^2} \, dx+\frac {1}{25} \int \frac {e^{-e^x+x}}{\left (-1-x+x^2\right )^2} \, dx-\frac {3}{50} \int \frac {e^{-e^x+x}}{2+x} \, dx+\frac {1}{10} \int \frac {e^{-e^x+x} (-1+x)}{\left (-1-x+x^2\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.55, size = 26, normalized size = 0.87 \begin {gather*} -\frac {e^{-e^x+x}}{10 \left (-2-3 x+x^2+x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 31, normalized size = 1.03 \begin {gather*} -\frac {e^{\left (2 \, x - e^{x} - \log \left (10 \, {\left (x + 2\right )} e^{x}\right )\right )}}{x^{2} - x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{3} - 2 \, x^{2} - {\left (x^{3} + x^{2} - 3 \, x - 2\right )} e^{x} - 5 \, x + 1\right )} e^{\left (2 \, x - e^{x} - \log \left (10 \, {\left (x + 2\right )} e^{x}\right )\right )}}{x^{5} - 5 \, x^{3} + 5 \, x + 2}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.11, size = 109, normalized size = 3.63
method | result | size |
risch | \(-\frac {{\mathrm e}^{x +\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (2+x \right )\right )^{3}}{2}-\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{x}\right )}{2}-\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{x} \left (2+x \right )\right )^{2} \mathrm {csgn}\left (i \left (2+x \right )\right )}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x} \left (2+x \right )\right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i \left (2+x \right )\right )}{2}-{\mathrm e}^{x}}}{10 \left (x^{2}-x -1\right ) \left (2+x \right )}\) | \(109\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.77, size = 22, normalized size = 0.73 \begin {gather*} -\frac {e^{\left (x - e^{x}\right )}}{10 \, {\left (x^{3} + x^{2} - 3 \, x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.72, size = 36, normalized size = 1.20 \begin {gather*} \frac {{\mathrm {e}}^{2\,x-{\mathrm {e}}^x}}{20\,{\mathrm {e}}^x-10\,x^2\,{\mathrm {e}}^x-10\,x^3\,{\mathrm {e}}^x+30\,x\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 27, normalized size = 0.90 \begin {gather*} - \frac {e^{- x} e^{2 x - e^{x}}}{10 x^{3} + 10 x^{2} - 30 x - 20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________