Optimal. Leaf size=31 \[ \frac {x^2+\log (x)}{-3-x+\left (\frac {1}{4} x (3+x)-\log (-2+x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 51.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1536-256 x+2528 x^2-1072 x^3+192 x^4+336 x^5-32 x^6-32 x^7+\left (768 x-128 x^2+128 x^3-384 x^4\right ) \log (-2+x)+\left (-512+256 x-1024 x^2+512 x^3\right ) \log ^2(-2+x)+\left (-512 x+1216 x^2+416 x^3-160 x^4-64 x^5+\left (-1280 x-128 x^2+256 x^3\right ) \log (-2+x)\right ) \log (x)}{-4608 x-768 x^2+2752 x^3+1120 x^4-450 x^5-359 x^6-32 x^7+30 x^8+10 x^9+x^{10}+\left (-4608 x^2-768 x^3+1888 x^4+688 x^5-144 x^6-112 x^7-16 x^8\right ) \log (-2+x)+\left (3072 x-512 x^2-2240 x^3-288 x^4+384 x^5+96 x^6\right ) \log ^2(-2+x)+\left (1536 x^2-256 x^3-256 x^4\right ) \log ^3(-2+x)+\left (-512 x+256 x^2\right ) \log ^4(-2+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 \left (-96+16 x-158 x^2+67 x^3-12 x^4-21 x^5+2 x^6+2 x^7-16 \left (-2+x-4 x^2+2 x^3\right ) \log ^2(-2+x)+2 x \left (16-38 x-13 x^2+5 x^3+2 x^4\right ) \log (x)+8 x \log (-2+x) \left (-6+x-x^2+3 x^3+\left (10+x-2 x^2\right ) \log (x)\right )\right )}{(2-x) x \left (48+16 x-9 x^2-6 x^3-x^4+8 x (3+x) \log (-2+x)-16 \log ^2(-2+x)\right )^2} \, dx\\ &=16 \int \frac {-96+16 x-158 x^2+67 x^3-12 x^4-21 x^5+2 x^6+2 x^7-16 \left (-2+x-4 x^2+2 x^3\right ) \log ^2(-2+x)+2 x \left (16-38 x-13 x^2+5 x^3+2 x^4\right ) \log (x)+8 x \log (-2+x) \left (-6+x-x^2+3 x^3+\left (10+x-2 x^2\right ) \log (x)\right )}{(2-x) x \left (48+16 x-9 x^2-6 x^3-x^4+8 x (3+x) \log (-2+x)-16 \log ^2(-2+x)\right )^2} \, dx\\ &=16 \int \left (-\frac {16}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {96}{(-2+x) x \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {158 x}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}-\frac {67 x^2}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {12 x^3}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {21 x^4}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}-\frac {2 x^5}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}-\frac {2 x^6}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {48 \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}-\frac {8 x \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {8 x^2 \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}-\frac {24 x^3 \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}+\frac {16 \left (1+2 x^2\right ) \log ^2(-2+x)}{x \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}-\frac {2 \left (16-38 x-13 x^2+5 x^3+2 x^4+40 \log (-2+x)+4 x \log (-2+x)-8 x^2 \log (-2+x)\right ) \log (x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2}\right ) \, dx\\ &=-\left (32 \int \frac {x^5}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx\right )-32 \int \frac {x^6}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx-32 \int \frac {\left (16-38 x-13 x^2+5 x^3+2 x^4+40 \log (-2+x)+4 x \log (-2+x)-8 x^2 \log (-2+x)\right ) \log (x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx-128 \int \frac {x \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+128 \int \frac {x^2 \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+192 \int \frac {x^3}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx-256 \int \frac {1}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+256 \int \frac {\left (1+2 x^2\right ) \log ^2(-2+x)}{x \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+336 \int \frac {x^4}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx-384 \int \frac {x^3 \log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+768 \int \frac {\log (-2+x)}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx-1072 \int \frac {x^2}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+1536 \int \frac {1}{(-2+x) x \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx+2528 \int \frac {x}{(-2+x) \left (-48-16 x+9 x^2+6 x^3+x^4-24 x \log (-2+x)-8 x^2 \log (-2+x)+16 \log ^2(-2+x)\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 46, normalized size = 1.48 \begin {gather*} \frac {16 \left (x^2+\log (x)\right )}{-48-16 x+9 x^2+6 x^3+x^4-8 x (3+x) \log (-2+x)+16 \log ^2(-2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.93, size = 49, normalized size = 1.58 \begin {gather*} \frac {16 \, {\left (x^{2} + \log \relax (x)\right )}}{x^{4} + 6 \, x^{3} + 9 \, x^{2} - 8 \, {\left (x^{2} + 3 \, x\right )} \log \left (x - 2\right ) + 16 \, \log \left (x - 2\right )^{2} - 16 \, x - 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.59, size = 52, normalized size = 1.68 \begin {gather*} \frac {16 \, {\left (x^{2} + \log \relax (x)\right )}}{x^{4} + 6 \, x^{3} - 8 \, x^{2} \log \left (x - 2\right ) + 9 \, x^{2} - 24 \, x \log \left (x - 2\right ) + 16 \, \log \left (x - 2\right )^{2} - 16 \, x - 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 53, normalized size = 1.71
method | result | size |
risch | \(\frac {16 \ln \relax (x )+16 x^{2}}{x^{4}-8 x^{2} \ln \left (x -2\right )+6 x^{3}+16 \ln \left (x -2\right )^{2}-24 x \ln \left (x -2\right )+9 x^{2}-16 x -48}\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 49, normalized size = 1.58 \begin {gather*} \frac {16 \, {\left (x^{2} + \log \relax (x)\right )}}{x^{4} + 6 \, x^{3} + 9 \, x^{2} - 8 \, {\left (x^{2} + 3 \, x\right )} \log \left (x - 2\right ) + 16 \, \log \left (x - 2\right )^{2} - 16 \, x - 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {\ln \left (x-2\right )\,\left (-384\,x^4+128\,x^3-128\,x^2+768\,x\right )-256\,x-\ln \relax (x)\,\left (512\,x+\ln \left (x-2\right )\,\left (-256\,x^3+128\,x^2+1280\,x\right )-1216\,x^2-416\,x^3+160\,x^4+64\,x^5\right )+{\ln \left (x-2\right )}^2\,\left (512\,x^3-1024\,x^2+256\,x-512\right )+2528\,x^2-1072\,x^3+192\,x^4+336\,x^5-32\,x^6-32\,x^7+1536}{4608\,x+{\ln \left (x-2\right )}^3\,\left (256\,x^4+256\,x^3-1536\,x^2\right )-{\ln \left (x-2\right )}^2\,\left (96\,x^6+384\,x^5-288\,x^4-2240\,x^3-512\,x^2+3072\,x\right )+{\ln \left (x-2\right )}^4\,\left (512\,x-256\,x^2\right )+\ln \left (x-2\right )\,\left (16\,x^8+112\,x^7+144\,x^6-688\,x^5-1888\,x^4+768\,x^3+4608\,x^2\right )+768\,x^2-2752\,x^3-1120\,x^4+450\,x^5+359\,x^6+32\,x^7-30\,x^8-10\,x^9-x^{10}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 51, normalized size = 1.65 \begin {gather*} \frac {16 x^{2} + 16 \log {\relax (x )}}{x^{4} + 6 x^{3} + 9 x^{2} - 16 x + \left (- 8 x^{2} - 24 x\right ) \log {\left (x - 2 \right )} + 16 \log {\left (x - 2 \right )}^{2} - 48} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________