Optimal. Leaf size=31 \[ \log \left (\frac {\left (-2-e^x+x+x^2\right )^2 \left (e^{3 x}+x-\log (x)\right )^2}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-2 x+4 x^3+e^x \left (2-2 x^2\right )+e^{3 x} \left (4+e^x (2-8 x)-12 x+8 x^2+6 x^3\right )+\left (-4-2 x^2+e^x (-2+2 x)\right ) \log (x)}{-2 x^2-e^x x^2+x^3+x^4+e^{3 x} \left (-2 x-e^x x+x^2+x^3\right )+\left (2 x+e^x x-x^2-x^3\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-2-e^{4 x} (1-4 x)+x-2 x^3+e^x \left (-1+x^2\right )-e^{3 x} \left (2-6 x+4 x^2+3 x^3\right )-\left (-2+e^x (-1+x)-x^2\right ) \log (x)\right )}{x \left (2+e^x-x-x^2\right ) \left (e^{3 x}+x-\log (x)\right )} \, dx\\ &=2 \int \frac {-2-e^{4 x} (1-4 x)+x-2 x^3+e^x \left (-1+x^2\right )-e^{3 x} \left (2-6 x+4 x^2+3 x^3\right )-\left (-2+e^x (-1+x)-x^2\right ) \log (x)}{x \left (2+e^x-x-x^2\right ) \left (e^{3 x}+x-\log (x)\right )} \, dx\\ &=2 \int \left (\frac {-1+4 x}{x}+\frac {-3-x+x^2}{2+e^x-x-x^2}-\frac {1-x+3 x^2-3 x \log (x)}{x \left (e^{3 x}+x-\log (x)\right )}\right ) \, dx\\ &=2 \int \frac {-1+4 x}{x} \, dx+2 \int \frac {-3-x+x^2}{2+e^x-x-x^2} \, dx-2 \int \frac {1-x+3 x^2-3 x \log (x)}{x \left (e^{3 x}+x-\log (x)\right )} \, dx\\ &=2 \int \left (4-\frac {1}{x}\right ) \, dx+2 \int \left (-\frac {3}{2+e^x-x-x^2}+\frac {x}{-2-e^x+x+x^2}-\frac {x^2}{-2-e^x+x+x^2}\right ) \, dx-2 \int \left (-\frac {1}{e^{3 x}+x-\log (x)}+\frac {1}{x \left (e^{3 x}+x-\log (x)\right )}+\frac {3 x}{e^{3 x}+x-\log (x)}-\frac {3 \log (x)}{e^{3 x}+x-\log (x)}\right ) \, dx\\ &=8 x-2 \log (x)+2 \int \frac {x}{-2-e^x+x+x^2} \, dx-2 \int \frac {x^2}{-2-e^x+x+x^2} \, dx+2 \int \frac {1}{e^{3 x}+x-\log (x)} \, dx-2 \int \frac {1}{x \left (e^{3 x}+x-\log (x)\right )} \, dx-6 \int \frac {1}{2+e^x-x-x^2} \, dx-6 \int \frac {x}{e^{3 x}+x-\log (x)} \, dx+6 \int \frac {\log (x)}{e^{3 x}+x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 33, normalized size = 1.06 \begin {gather*} 2 \left (-\log (x)+\log \left (2+e^x-x-x^2\right )+\log \left (e^{3 x}+x-\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 35, normalized size = 1.13 \begin {gather*} 2 \, \log \left (-x^{2} - x + e^{x} + 2\right ) - 2 \, \log \relax (x) + 2 \, \log \left (-x - e^{\left (3 \, x\right )} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 36, normalized size = 1.16
method | result | size |
risch | \(-2 \ln \relax (x )+2 \ln \left (2-x -x^{2}+{\mathrm e}^{x}\right )+2 \ln \left (-{\mathrm e}^{3 x}-x +\ln \relax (x )\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 33, normalized size = 1.06 \begin {gather*} 2 \, \log \left (-x^{2} - x + e^{x} + 2\right ) + 2 \, \log \left (x + e^{\left (3 \, x\right )} - \log \relax (x)\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.58, size = 31, normalized size = 1.00 \begin {gather*} 2\,\ln \left (x-{\mathrm {e}}^x+x^2-2\right )+2\,\ln \left (x+{\mathrm {e}}^{3\,x}-\ln \relax (x)\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.88, size = 60, normalized size = 1.94 \begin {gather*} - 2 \log {\relax (x )} + 2 \log {\left (- x^{3} + x^{2} \log {\relax (x )} - x^{2} + x \log {\relax (x )} + 2 x + \left (x - \log {\relax (x )}\right ) e^{x} + \left (- x^{2} - x + 2\right ) e^{3 x} + e^{4 x} - 2 \log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________