Optimal. Leaf size=22 \[ \left (-1-x+\frac {2 (-14+x) \left (-x+x^2\right )}{e^2}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.03, antiderivative size = 76, normalized size of antiderivative = 3.45, number of steps used = 3, number of rules used = 1, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {12} \begin {gather*} \frac {4 x^6}{e^4}-\frac {120 x^5}{e^4}-\frac {4 x^4}{e^2}+\frac {1012 x^4}{e^4}+\frac {56 x^3}{e^2}-\frac {1680 x^3}{e^4}+\frac {4 x^2}{e^2}+\frac {784 x^2}{e^4}-\frac {56 x}{e^2}+(x+1)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (1568 x-5040 x^2+4048 x^3-600 x^4+24 x^5+e^4 (2+2 x)+e^2 \left (-56+8 x+168 x^2-16 x^3\right )\right ) \, dx}{e^4}\\ &=\frac {784 x^2}{e^4}-\frac {1680 x^3}{e^4}+\frac {1012 x^4}{e^4}-\frac {120 x^5}{e^4}+\frac {4 x^6}{e^4}+(1+x)^2+\frac {\int \left (-56+8 x+168 x^2-16 x^3\right ) \, dx}{e^2}\\ &=-\frac {56 x}{e^2}+\frac {784 x^2}{e^4}+\frac {4 x^2}{e^2}-\frac {1680 x^3}{e^4}+\frac {56 x^3}{e^2}+\frac {1012 x^4}{e^4}-\frac {4 x^4}{e^2}-\frac {120 x^5}{e^4}+\frac {4 x^6}{e^4}+(1+x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.01, size = 81, normalized size = 3.68 \begin {gather*} 2 \left (x-\frac {28 x}{e^2}+\frac {x^2}{2}+\frac {392 x^2}{e^4}+\frac {2 x^2}{e^2}-\frac {840 x^3}{e^4}+\frac {28 x^3}{e^2}+\frac {506 x^4}{e^4}-\frac {2 x^4}{e^2}-\frac {60 x^5}{e^4}+\frac {2 x^6}{e^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 60, normalized size = 2.73 \begin {gather*} {\left (4 \, x^{6} - 120 \, x^{5} + 1012 \, x^{4} - 1680 \, x^{3} + 784 \, x^{2} + {\left (x^{2} + 2 \, x\right )} e^{4} - 4 \, {\left (x^{4} - 14 \, x^{3} - x^{2} + 14 \, x\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 60, normalized size = 2.73 \begin {gather*} {\left (4 \, x^{6} - 120 \, x^{5} + 1012 \, x^{4} - 1680 \, x^{3} + 784 \, x^{2} + {\left (x^{2} + 2 \, x\right )} e^{4} - 4 \, {\left (x^{4} - 14 \, x^{3} - x^{2} + 14 \, x\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 66, normalized size = 3.00
method | result | size |
gosper | \(x \left (4 x^{5}-4 x^{3} {\mathrm e}^{2}-120 x^{4}+x \,{\mathrm e}^{4}+56 x^{2} {\mathrm e}^{2}+1012 x^{3}+2 \,{\mathrm e}^{4}+4 \,{\mathrm e}^{2} x -1680 x^{2}-56 \,{\mathrm e}^{2}+784 x \right ) {\mathrm e}^{-4}\) | \(66\) |
default | \({\mathrm e}^{-4} \left (\left (x^{2}+2 x \right ) {\mathrm e}^{4}+{\mathrm e}^{2} \left (-4 x^{4}+56 x^{3}+4 x^{2}-56 x \right )+4 x^{6}-120 x^{5}+1012 x^{4}-1680 x^{3}+784 x^{2}\right )\) | \(66\) |
risch | \(4 \,{\mathrm e}^{-4} x^{6}-4 \,{\mathrm e}^{-2} x^{4}-120 \,{\mathrm e}^{-4} x^{5}+x^{2}+56 \,{\mathrm e}^{-2} x^{3}+1012 \,{\mathrm e}^{-4} x^{4}+2 x +4 x^{2} {\mathrm e}^{-2}-1680 \,{\mathrm e}^{-4} x^{3}-56 x \,{\mathrm e}^{-2}+784 \,{\mathrm e}^{-4} x^{2}\) | \(69\) |
norman | \(\left (\left (2 \,{\mathrm e}^{2}-56\right ) x +\left ({\mathrm e}^{4}+4 \,{\mathrm e}^{2}+784\right ) {\mathrm e}^{-2} x^{2}-120 \,{\mathrm e}^{-2} x^{5}+4 \,{\mathrm e}^{-2} x^{6}-4 \left ({\mathrm e}^{2}-253\right ) {\mathrm e}^{-2} x^{4}+56 \left ({\mathrm e}^{2}-30\right ) {\mathrm e}^{-2} x^{3}\right ) {\mathrm e}^{-2}\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 60, normalized size = 2.73 \begin {gather*} {\left (4 \, x^{6} - 120 \, x^{5} + 1012 \, x^{4} - 1680 \, x^{3} + 784 \, x^{2} + {\left (x^{2} + 2 \, x\right )} e^{4} - 4 \, {\left (x^{4} - 14 \, x^{3} - x^{2} + 14 \, x\right )} e^{2}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 67, normalized size = 3.05 \begin {gather*} 4\,{\mathrm {e}}^{-4}\,x^6-120\,{\mathrm {e}}^{-4}\,x^5-\frac {{\mathrm {e}}^{-4}\,\left (16\,{\mathrm {e}}^2-4048\right )\,x^4}{4}+\frac {{\mathrm {e}}^{-4}\,\left (168\,{\mathrm {e}}^2-5040\right )\,x^3}{3}+\frac {{\mathrm {e}}^{-4}\,\left (8\,{\mathrm {e}}^2+2\,{\mathrm {e}}^4+1568\right )\,x^2}{2}+2\,{\mathrm {e}}^{-2}\,\left ({\mathrm {e}}^2-28\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.07, size = 71, normalized size = 3.23 \begin {gather*} \frac {4 x^{6}}{e^{4}} - \frac {120 x^{5}}{e^{4}} + \frac {x^{4} \left (1012 - 4 e^{2}\right )}{e^{4}} + \frac {x^{3} \left (-1680 + 56 e^{2}\right )}{e^{4}} + \frac {x^{2} \left (4 e^{2} + e^{4} + 784\right )}{e^{4}} + \frac {x \left (-56 + 2 e^{2}\right )}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________