Optimal. Leaf size=20 \[ \log \left (\frac {2 (-4+x+\log (5))^2}{\left (5+x^2 \log (x)\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.62, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10+8 x-2 x^2-2 x \log (5)+\left (16 x-2 x^2-4 x \log (5)\right ) \log (x)}{-20+5 x+5 \log (5)+\left (-4 x^2+x^3+x^2 \log (5)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10-2 x^2+x (8-2 \log (5))+\left (16 x-2 x^2-4 x \log (5)\right ) \log (x)}{-20+5 x+5 \log (5)+\left (-4 x^2+x^3+x^2 \log (5)\right ) \log (x)} \, dx\\ &=\int \frac {2 \left (-5+x^2+x (-4+\log (5))+x (-8+x+\log (25)) \log (x)\right )}{(4-x-\log (5)) \left (5+x^2 \log (x)\right )} \, dx\\ &=2 \int \frac {-5+x^2+x (-4+\log (5))+x (-8+x+\log (25)) \log (x)}{(4-x-\log (5)) \left (5+x^2 \log (x)\right )} \, dx\\ &=2 \int \left (\frac {8-x-\log (25)}{x (-4+x+\log (5))}+\frac {-10 x+x^3-x^2 (4-\log (5))+5 (8-\log (25))}{x (4-x-\log (5)) \left (5+x^2 \log (x)\right )}\right ) \, dx\\ &=2 \int \frac {8-x-\log (25)}{x (-4+x+\log (5))} \, dx+2 \int \frac {-10 x+x^3-x^2 (4-\log (5))+5 (8-\log (25))}{x (4-x-\log (5)) \left (5+x^2 \log (x)\right )} \, dx\\ &=2 \int \left (\frac {1}{-4+x+\log (5)}+\frac {8-\log (25)}{x (-4+\log (5))}\right ) \, dx+2 \int \frac {10-x^2}{x \left (5+x^2 \log (x)\right )} \, dx\\ &=-\frac {2 (8-\log (25)) \log (x)}{4-\log (5)}+2 \log (4-x-\log (5))+2 \int \left (\frac {10}{x \left (5+x^2 \log (x)\right )}-\frac {x}{5+x^2 \log (x)}\right ) \, dx\\ &=-\frac {2 (8-\log (25)) \log (x)}{4-\log (5)}+2 \log (4-x-\log (5))-2 \int \frac {x}{5+x^2 \log (x)} \, dx+20 \int \frac {1}{x \left (5+x^2 \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.34, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {10+8 x-2 x^2-2 x \log (5)+\left (16 x-2 x^2-4 x \log (5)\right ) \log (x)}{-20+5 x+5 \log (5)+\left (-4 x^2+x^3+x^2 \log (5)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 28, normalized size = 1.40 \begin {gather*} 2 \, \log \left (x + \log \relax (5) - 4\right ) - 4 \, \log \relax (x) - 2 \, \log \left (\frac {x^{2} \log \relax (x) + 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 20, normalized size = 1.00 \begin {gather*} -2 \, \log \left (x^{2} \log \relax (x) + 5\right ) + 2 \, \log \left (x + \log \relax (5) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 21, normalized size = 1.05
method | result | size |
norman | \(2 \ln \left (\ln \relax (5)-4+x \right )-2 \ln \left (5+x^{2} \ln \relax (x )\right )\) | \(21\) |
risch | \(-4 \ln \relax (x )+2 \ln \left (\ln \relax (5)-4+x \right )-2 \ln \left (\ln \relax (x )+\frac {5}{x^{2}}\right )\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.89, size = 28, normalized size = 1.40 \begin {gather*} 2 \, \log \left (x + \log \relax (5) - 4\right ) - 4 \, \log \relax (x) - 2 \, \log \left (\frac {x^{2} \log \relax (x) + 5}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.55, size = 78, normalized size = 3.90 \begin {gather*} \frac {16\,\ln \relax (x)}{\ln \relax (5)-4}-2\,\ln \left (x+\ln \relax (5)-4\right )-2\,\ln \left (x^2\,\ln \relax (x)+5\right )-\frac {16\,\ln \left (x+\ln \relax (5)-4\right )}{\ln \relax (5)-4}-2\,\ln \left (\frac {1}{x^2}\right )+\frac {4\,\ln \relax (5)\,\ln \left (x+\ln \relax (5)-4\right )}{\ln \relax (5)-4}-\frac {4\,\ln \relax (5)\,\ln \relax (x)}{\ln \relax (5)-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.62, size = 26, normalized size = 1.30 \begin {gather*} - 4 \log {\relax (x )} - 2 \log {\left (\log {\relax (x )} + \frac {5}{x^{2}} \right )} + 2 \log {\left (x - 4 + \log {\relax (5 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________