Optimal. Leaf size=30 \[ 5 \left (-\frac {10 \left (-1+\frac {5 e}{(1-x) (3-x)}\right )}{27 x}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 40, normalized size of antiderivative = 1.33, number of steps used = 2, number of rules used = 1, integrand size = 71, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2074} \begin {gather*} 5 x-\frac {125 e}{27 (1-x)}+\frac {125 e}{81 (3-x)}+\frac {50 (3-5 e)}{81 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (5+\frac {125 e}{81 (-3+x)^2}-\frac {125 e}{27 (-1+x)^2}+\frac {50 (-3+5 e)}{81 x^2}\right ) \, dx\\ &=-\frac {125 e}{27 (1-x)}+\frac {125 e}{81 (3-x)}+\frac {50 (3-5 e)}{81 x}+5 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 33, normalized size = 1.10 \begin {gather*} \frac {5}{81} \left (\frac {30-50 e}{x}+81 x+\frac {50 e (-4+x)}{3-4 x+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 40, normalized size = 1.33 \begin {gather*} \frac {5 \, {\left (27 \, x^{4} - 108 \, x^{3} + 91 \, x^{2} - 40 \, x - 50 \, e + 30\right )}}{27 \, {\left (x^{3} - 4 \, x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 32, normalized size = 1.07 \begin {gather*} 5 \, x + \frac {50 \, {\left (x^{2} - 4 \, x - 5 \, e + 3\right )}}{27 \, {\left (x^{3} - 4 \, x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 33, normalized size = 1.10
method | result | size |
risch | \(5 x +\frac {\frac {50 x^{2}}{27}-\frac {200 x}{27}+\frac {50}{9}-\frac {250 \,{\mathrm e}}{27}}{x \left (x^{2}-4 x +3\right )}\) | \(33\) |
default | \(5 x +\frac {125 \,{\mathrm e}}{27 \left (x -1\right )}-\frac {5 \left (\frac {50 \,{\mathrm e}}{3}-10\right )}{27 x}-\frac {125 \,{\mathrm e}}{81 \left (x -3\right )}\) | \(34\) |
norman | \(\frac {-\frac {1705 x^{2}}{27}+\frac {1420 x}{27}+5 x^{4}+\frac {50}{9}-\frac {250 \,{\mathrm e}}{27}}{x \left (x^{2}-4 x +3\right )}\) | \(34\) |
gosper | \(-\frac {5 \left (-27 x^{4}+341 x^{2}+50 \,{\mathrm e}-284 x -30\right )}{27 x \left (x^{2}-4 x +3\right )}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 32, normalized size = 1.07 \begin {gather*} 5 \, x + \frac {50 \, {\left (x^{2} - 4 \, x - 5 \, e + 3\right )}}{27 \, {\left (x^{3} - 4 \, x^{2} + 3 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.40, size = 33, normalized size = 1.10 \begin {gather*} 5\,x-\frac {-\frac {50\,x^2}{27}+\frac {200\,x}{27}+\frac {250\,\mathrm {e}}{27}-\frac {50}{9}}{x\,\left (x^2-4\,x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.60, size = 31, normalized size = 1.03 \begin {gather*} 5 x + \frac {50 x^{2} - 200 x - 250 e + 150}{27 x^{3} - 108 x^{2} + 81 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________