Optimal. Leaf size=21 \[ \left (1+e^x+x\right ) \log \left (\frac {e^{e^x+3 x}}{x}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.45, antiderivative size = 45, normalized size of antiderivative = 2.14, number of steps used = 29, number of rules used = 8, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {14, 2194, 6742, 2199, 2178, 2176, 2554, 2548} \begin {gather*} 3 x+e^x+x \log \left (\frac {e^{3 x+e^x}}{x}\right )+e^x \log \left (\frac {e^{3 x+e^x}}{x}\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2548
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{2 x}+\frac {e^x \left (-1+4 x+x^2+x \log \left (\frac {e^{e^x+3 x}}{x}\right )\right )}{x}+\frac {-1+2 x+3 x^2+x \log \left (\frac {e^{e^x+3 x}}{x}\right )}{x}\right ) \, dx\\ &=\int e^{2 x} \, dx+\int \frac {e^x \left (-1+4 x+x^2+x \log \left (\frac {e^{e^x+3 x}}{x}\right )\right )}{x} \, dx+\int \frac {-1+2 x+3 x^2+x \log \left (\frac {e^{e^x+3 x}}{x}\right )}{x} \, dx\\ &=\frac {e^{2 x}}{2}+\int \left (\frac {-1+2 x+3 x^2}{x}+\log \left (\frac {e^{e^x+3 x}}{x}\right )\right ) \, dx+\int \left (\frac {e^x \left (-1+4 x+x^2\right )}{x}+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )\right ) \, dx\\ &=\frac {e^{2 x}}{2}+\int \frac {e^x \left (-1+4 x+x^2\right )}{x} \, dx+\int \frac {-1+2 x+3 x^2}{x} \, dx+\int \log \left (\frac {e^{e^x+3 x}}{x}\right ) \, dx+\int e^x \log \left (\frac {e^{e^x+3 x}}{x}\right ) \, dx\\ &=\frac {e^{2 x}}{2}+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )+x \log \left (\frac {e^{e^x+3 x}}{x}\right )+\int \left (2-\frac {1}{x}+3 x\right ) \, dx+\int \left (4 e^x-\frac {e^x}{x}+e^x x\right ) \, dx-\int \left (-1+\left (3+e^x\right ) x\right ) \, dx-\int \frac {e^x \left (-1+\left (3+e^x\right ) x\right )}{x} \, dx\\ &=\frac {e^{2 x}}{2}+3 x+\frac {3 x^2}{2}+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )+x \log \left (\frac {e^{e^x+3 x}}{x}\right )-\log (x)+4 \int e^x \, dx-\int \frac {e^x}{x} \, dx+\int e^x x \, dx-\int \left (3+e^x\right ) x \, dx-\int \left (e^{2 x}+\frac {e^x (-1+3 x)}{x}\right ) \, dx\\ &=4 e^x+\frac {e^{2 x}}{2}+3 x+e^x x+\frac {3 x^2}{2}-\text {Ei}(x)+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )+x \log \left (\frac {e^{e^x+3 x}}{x}\right )-\log (x)-\int e^x \, dx-\int e^{2 x} \, dx-\int \frac {e^x (-1+3 x)}{x} \, dx-\int \left (3 x+e^x x\right ) \, dx\\ &=3 e^x+3 x+e^x x-\text {Ei}(x)+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )+x \log \left (\frac {e^{e^x+3 x}}{x}\right )-\log (x)-\int \left (3 e^x-\frac {e^x}{x}\right ) \, dx-\int e^x x \, dx\\ &=3 e^x+3 x-\text {Ei}(x)+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )+x \log \left (\frac {e^{e^x+3 x}}{x}\right )-\log (x)-3 \int e^x \, dx+\int e^x \, dx+\int \frac {e^x}{x} \, dx\\ &=e^x+3 x+e^x \log \left (\frac {e^{e^x+3 x}}{x}\right )+x \log \left (\frac {e^{e^x+3 x}}{x}\right )-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 31, normalized size = 1.48 \begin {gather*} e^x+3 x+\left (e^x+x\right ) \log \left (\frac {e^{e^x+3 x}}{x}\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 18, normalized size = 0.86 \begin {gather*} {\left (x + e^{x} + 1\right )} \log \left (\frac {e^{\left (3 \, x + e^{x}\right )}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 35, normalized size = 1.67 \begin {gather*} 3 \, x^{2} + 4 \, x e^{x} - x \log \relax (x) - e^{x} \log \relax (x) + 3 \, x + e^{\left (2 \, x\right )} + e^{x} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 65, normalized size = 3.10
method | result | size |
default | \({\mathrm e}^{2 x}+\left (\ln \left (\frac {{\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )-3 x -{\mathrm e}^{x}+\ln \relax (x )\right ) {\mathrm e}^{x}+3 \,{\mathrm e}^{x} x -{\mathrm e}^{x} \ln \relax (x )+3 x -\ln \relax (x )+\ln \left (\frac {{\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right ) x +{\mathrm e}^{x}\) | \(65\) |
risch | \(\left ({\mathrm e}^{x}+x \right ) \ln \left ({\mathrm e}^{3 x +{\mathrm e}^{x}}\right )-x \ln \relax (x )-{\mathrm e}^{x} \ln \relax (x )-\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x +{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )}{2}+\frac {i \pi x \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )^{2}}{2}+\frac {i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{3 x +{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )^{2}}{2}-\frac {i \pi x \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )^{3}}{2}+3 x -\ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{3 x +{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right ) {\mathrm e}^{x}}{2}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )^{2} {\mathrm e}^{x}}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{3 x +{\mathrm e}^{x}}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )^{2} {\mathrm e}^{x}}{2}-\frac {i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{3 x +{\mathrm e}^{x}}}{x}\right )^{3} {\mathrm e}^{x}}{2}+{\mathrm e}^{x}\) | \(275\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -e^{x} \log \relax (x) + x \log \left (\frac {e^{\left (3 \, x + e^{x}\right )}}{x}\right ) + 3 \, x - {\rm Ei}\relax (x) + e^{\left (2 \, x\right )} + 4 \, e^{x} + \int \frac {{\left (3 \, x^{2} + 1\right )} e^{x}}{x}\,{d x} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.61, size = 37, normalized size = 1.76 \begin {gather*} 3\,x+{\mathrm {e}}^{2\,x}+{\mathrm {e}}^x-\ln \relax (x)+x\,\ln \left (\frac {1}{x}\right )+\ln \left (\frac {1}{x}\right )\,{\mathrm {e}}^x+4\,x\,{\mathrm {e}}^x+3\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________