Optimal. Leaf size=31 \[ \log \left (\frac {2 e^{\frac {1}{32} \left (\left (5+e^{3/x}\right )^2-x\right )}}{e^3+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 36, normalized size of antiderivative = 1.16, number of steps used = 8, number of rules used = 5, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {6, 1593, 6742, 2209, 43} \begin {gather*} -\frac {x}{32}+\frac {5 e^{3/x}}{16}+\frac {e^{6/x}}{32}-\log \left (x+e^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 43
Rule 1593
Rule 2209
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{3/x} \left (-30 e^3-30 x\right )+e^{6/x} \left (-6 e^3-6 x\right )+\left (-32-e^3\right ) x^2-x^3}{32 e^3 x^2+32 x^3} \, dx\\ &=\int \frac {e^{3/x} \left (-30 e^3-30 x\right )+e^{6/x} \left (-6 e^3-6 x\right )+\left (-32-e^3\right ) x^2-x^3}{x^2 \left (32 e^3+32 x\right )} \, dx\\ &=\int \left (-\frac {15 e^{3/x}}{16 x^2}-\frac {3 e^{6/x}}{16 x^2}+\frac {-32-e^3-x}{32 \left (e^3+x\right )}\right ) \, dx\\ &=\frac {1}{32} \int \frac {-32-e^3-x}{e^3+x} \, dx-\frac {3}{16} \int \frac {e^{6/x}}{x^2} \, dx-\frac {15}{16} \int \frac {e^{3/x}}{x^2} \, dx\\ &=\frac {5 e^{3/x}}{16}+\frac {e^{6/x}}{32}+\frac {1}{32} \int \left (-1-\frac {32}{e^3+x}\right ) \, dx\\ &=\frac {5 e^{3/x}}{16}+\frac {e^{6/x}}{32}-\frac {x}{32}-\log \left (e^3+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 32, normalized size = 1.03 \begin {gather*} \frac {1}{32} \left (10 e^{3/x}+e^{6/x}-x-32 \log \left (e^3+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 27, normalized size = 0.87 \begin {gather*} -\frac {1}{32} \, x + \frac {1}{32} \, e^{\frac {6}{x}} + \frac {5}{16} \, e^{\frac {3}{x}} - \log \left (x + e^{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 47, normalized size = 1.52 \begin {gather*} \frac {1}{32} \, x {\left (\frac {e^{\frac {6}{x}}}{x} + \frac {10 \, e^{\frac {3}{x}}}{x} - \frac {32 \, \log \relax (x)}{x} - \frac {32 \, \log \left (\frac {e^{3}}{x} + 1\right )}{x} - 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.40, size = 28, normalized size = 0.90
method | result | size |
risch | \(-\frac {x}{32}-\ln \left ({\mathrm e}^{3}+x \right )+\frac {{\mathrm e}^{\frac {6}{x}}}{32}+\frac {5 \,{\mathrm e}^{\frac {3}{x}}}{16}\) | \(28\) |
norman | \(\frac {-\frac {x^{2}}{32}+\frac {5 x \,{\mathrm e}^{\frac {3}{x}}}{16}+\frac {{\mathrm e}^{\frac {6}{x}} x}{32}}{x}-\ln \left ({\mathrm e}^{3}+x \right )\) | \(39\) |
derivativedivides | \(-\frac {x}{32}-\ln \left (\frac {3 \,{\mathrm e}^{3}}{x}+3\right )+\ln \left (\frac {3}{x}\right )-\frac {15 \,{\mathrm e}^{-3} {\mathrm e}^{-3 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {3}{x}-3 \,{\mathrm e}^{-3}\right )}{16}-\frac {3 \,{\mathrm e}^{-3} {\mathrm e}^{-6 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {6}{x}-6 \,{\mathrm e}^{-3}\right )}{16}+\frac {5 \,{\mathrm e}^{3} \left ({\mathrm e}^{-3} {\mathrm e}^{\frac {3}{x}}+3 \left ({\mathrm e}^{-3}\right )^{2} {\mathrm e}^{-3 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {3}{x}-3 \,{\mathrm e}^{-3}\right )\right )}{16}+\frac {{\mathrm e}^{3} \left (\frac {{\mathrm e}^{-3} {\mathrm e}^{\frac {6}{x}}}{2}+3 \left ({\mathrm e}^{-3}\right )^{2} {\mathrm e}^{-6 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {6}{x}-6 \,{\mathrm e}^{-3}\right )\right )}{16}\) | \(170\) |
default | \(-\frac {x}{32}-\ln \left (\frac {3 \,{\mathrm e}^{3}}{x}+3\right )+\ln \left (\frac {3}{x}\right )-\frac {15 \,{\mathrm e}^{-3} {\mathrm e}^{-3 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {3}{x}-3 \,{\mathrm e}^{-3}\right )}{16}-\frac {3 \,{\mathrm e}^{-3} {\mathrm e}^{-6 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {6}{x}-6 \,{\mathrm e}^{-3}\right )}{16}+\frac {5 \,{\mathrm e}^{3} \left ({\mathrm e}^{-3} {\mathrm e}^{\frac {3}{x}}+3 \left ({\mathrm e}^{-3}\right )^{2} {\mathrm e}^{-3 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {3}{x}-3 \,{\mathrm e}^{-3}\right )\right )}{16}+\frac {{\mathrm e}^{3} \left (\frac {{\mathrm e}^{-3} {\mathrm e}^{\frac {6}{x}}}{2}+3 \left ({\mathrm e}^{-3}\right )^{2} {\mathrm e}^{-6 \,{\mathrm e}^{-3}} \expIntegralEi \left (1, -\frac {6}{x}-6 \,{\mathrm e}^{-3}\right )\right )}{16}\) | \(170\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 27, normalized size = 0.87 \begin {gather*} -\frac {1}{32} \, x + \frac {1}{32} \, e^{\frac {6}{x}} + \frac {5}{16} \, e^{\frac {3}{x}} - \log \left (x + e^{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.51, size = 27, normalized size = 0.87 \begin {gather*} \frac {5\,{\mathrm {e}}^{3/x}}{16}-\frac {x}{32}+\frac {{\mathrm {e}}^{6/x}}{32}-\ln \left (x+{\mathrm {e}}^3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 24, normalized size = 0.77 \begin {gather*} - \frac {x}{32} + \frac {e^{\frac {6}{x}}}{32} + \frac {5 e^{\frac {3}{x}}}{16} - \log {\left (x + e^{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________