Optimal. Leaf size=32 \[ -1-e^{-4+4 (1+x)}-x+e^3 \left (-x+\frac {1}{5} (-1+x) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 25, normalized size of antiderivative = 0.78, number of steps used = 3, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {12, 2194} \begin {gather*} \frac {1}{5} e^3 (3-x)^2-e^{4 x}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (-5-20 e^{4 x}+e^3 (-6+2 x)\right ) \, dx\\ &=\frac {1}{5} e^3 (3-x)^2-x-4 \int e^{4 x} \, dx\\ &=-e^{4 x}+\frac {1}{5} e^3 (3-x)^2-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 0.91 \begin {gather*} -e^{4 x}-x-\frac {6 e^3 x}{5}+\frac {e^3 x^2}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 21, normalized size = 0.66 \begin {gather*} \frac {1}{5} \, {\left (x^{2} - 6 \, x\right )} e^{3} - x - e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 21, normalized size = 0.66 \begin {gather*} \frac {1}{5} \, {\left (x^{2} - 6 \, x\right )} e^{3} - x - e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 0.69
method | result | size |
default | \(-x +\frac {{\mathrm e}^{3} \left (x^{2}-6 x \right )}{5}-{\mathrm e}^{4 x}\) | \(22\) |
norman | \(\left (-\frac {6 \,{\mathrm e}^{3}}{5}-1\right ) x +\frac {x^{2} {\mathrm e}^{3}}{5}-{\mathrm e}^{4 x}\) | \(23\) |
risch | \(-{\mathrm e}^{4 x}+\frac {x^{2} {\mathrm e}^{3}}{5}-\frac {6 x \,{\mathrm e}^{3}}{5}-x\) | \(23\) |
derivativedivides | \(-x +\frac {{\mathrm e}^{3} \left (4 x^{2}-24 x \right )}{20}-{\mathrm e}^{4 x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 21, normalized size = 0.66 \begin {gather*} \frac {1}{5} \, {\left (x^{2} - 6 \, x\right )} e^{3} - x - e^{\left (4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.41, size = 23, normalized size = 0.72 \begin {gather*} \frac {x^2\,{\mathrm {e}}^3}{5}-{\mathrm {e}}^{4\,x}-x\,\left (\frac {6\,{\mathrm {e}}^3}{5}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 24, normalized size = 0.75 \begin {gather*} \frac {x^{2} e^{3}}{5} + x \left (- \frac {6 e^{3}}{5} - 1\right ) - e^{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________