Optimal. Leaf size=27 \[ e^{\frac {1}{4-x}+\frac {1}{5} \left (\frac {x}{7}+\log (x)\right )}-\log (x) \]
________________________________________________________________________________________
Rubi [F] time = 11.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-560+280 x-35 x^2+\exp \left (\frac {-35-4 x+x^2+(-28+7 x) \log (x)}{-140+35 x}\right ) \left (112-5 x-x^2+x^3\right )}{560 x-280 x^2+35 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-560+280 x-35 x^2+\exp \left (\frac {-35-4 x+x^2+(-28+7 x) \log (x)}{-140+35 x}\right ) \left (112-5 x-x^2+x^3\right )}{x \left (560-280 x+35 x^2\right )} \, dx\\ &=\int \frac {-560+280 x-35 x^2+\exp \left (\frac {-35-4 x+x^2+(-28+7 x) \log (x)}{-140+35 x}\right ) \left (112-5 x-x^2+x^3\right )}{35 (-4+x)^2 x} \, dx\\ &=\frac {1}{35} \int \frac {-560+280 x-35 x^2+\exp \left (\frac {-35-4 x+x^2+(-28+7 x) \log (x)}{-140+35 x}\right ) \left (112-5 x-x^2+x^3\right )}{(-4+x)^2 x} \, dx\\ &=\frac {1}{35} \int \left (-\frac {35}{x}+\frac {e^{\frac {-35-4 x+x^2}{35 (-4+x)}} \left (112-5 x-x^2+x^3\right )}{(4-x)^2 x^{4/5}}\right ) \, dx\\ &=-\log (x)+\frac {1}{35} \int \frac {e^{\frac {-35-4 x+x^2}{35 (-4+x)}} \left (112-5 x-x^2+x^3\right )}{(4-x)^2 x^{4/5}} \, dx\\ &=-\log (x)+\frac {1}{7} \operatorname {Subst}\left (\int \frac {e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}} \left (112-5 x^5-x^{10}+x^{15}\right )}{\left (-4+x^5\right )^2} \, dx,x,\sqrt [5]{x}\right )\\ &=-\log (x)+\frac {1}{7} \operatorname {Subst}\left (\int \left (7 e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}}+e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}} x^5+\frac {140 e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}}}{\left (-4+x^5\right )^2}+\frac {35 e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}}}{-4+x^5}\right ) \, dx,x,\sqrt [5]{x}\right )\\ &=-\log (x)+\frac {1}{7} \operatorname {Subst}\left (\int e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}} x^5 \, dx,x,\sqrt [5]{x}\right )+5 \operatorname {Subst}\left (\int \frac {e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}}}{-4+x^5} \, dx,x,\sqrt [5]{x}\right )+20 \operatorname {Subst}\left (\int \frac {e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}}}{\left (-4+x^5\right )^2} \, dx,x,\sqrt [5]{x}\right )+\operatorname {Subst}\left (\int e^{\frac {-35-4 x^5+x^{10}}{35 \left (-4+x^5\right )}} \, dx,x,\sqrt [5]{x}\right )\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.60, size = 26, normalized size = 0.96 \begin {gather*} e^{\frac {1}{4-x}+\frac {x}{35}} \sqrt [5]{x}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 28, normalized size = 1.04 \begin {gather*} e^{\left (\frac {x^{2} + 7 \, {\left (x - 4\right )} \log \relax (x) - 4 \, x - 35}{35 \, {\left (x - 4\right )}}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.60, size = 51, normalized size = 1.89 \begin {gather*} e^{\left (\frac {x^{2}}{35 \, {\left (x - 4\right )}} + \frac {x \log \relax (x)}{5 \, {\left (x - 4\right )}} - \frac {4 \, x}{35 \, {\left (x - 4\right )}} - \frac {4 \, \log \relax (x)}{5 \, {\left (x - 4\right )}} - \frac {1}{x - 4}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 31, normalized size = 1.15
method | result | size |
risch | \(-\ln \relax (x )+{\mathrm e}^{\frac {7 x \ln \relax (x )+x^{2}-28 \ln \relax (x )-4 x -35}{35 x -140}}\) | \(31\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {\left (7 x -28\right ) \ln \relax (x )+x^{2}-4 x -35}{35 x -140}}-4 \,{\mathrm e}^{\frac {\left (7 x -28\right ) \ln \relax (x )+x^{2}-4 x -35}{35 x -140}}}{x -4}-\ln \relax (x )\) | \(67\) |
default | \(\frac {35 x \,{\mathrm e}^{\frac {\left (7 x -28\right ) \ln \relax (x )+x^{2}-4 x -35}{35 x -140}}-140 \,{\mathrm e}^{\frac {\left (7 x -28\right ) \ln \relax (x )+x^{2}-4 x -35}{35 x -140}}}{35 x -140}-\ln \relax (x )\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{35} \, \int \frac {{\left (x^{3} e^{\left (\frac {1}{35} \, x\right )} - x^{2} e^{\left (\frac {1}{35} \, x\right )} - 5 \, x e^{\left (\frac {1}{35} \, x\right )} + 112 \, e^{\left (\frac {1}{35} \, x\right )}\right )} e^{\left (-\frac {1}{x - 4}\right )}}{x^{\frac {14}{5}} - 8 \, x^{\frac {9}{5}} + 16 \, x^{\frac {4}{5}}}\,{d x} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.71, size = 64, normalized size = 2.37 \begin {gather*} \frac {x^{\frac {7\,x}{35\,x-140}}\,{\mathrm {e}}^{\frac {x^2}{35\,x-140}}\,{\mathrm {e}}^{-\frac {35}{35\,x-140}}\,{\mathrm {e}}^{-\frac {4\,x}{35\,x-140}}}{x^{\frac {28}{35\,x-140}}}-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________