Optimal. Leaf size=27 \[ -\frac {\log ^2(3)}{x}+\frac {3 x+\log \left (x+25 e^x x\right )}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 48, normalized size of antiderivative = 1.78, number of steps used = 10, number of rules used = 5, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {6, 6742, 14, 37, 2551} \begin {gather*} \frac {(x+1)^2}{2 x^2}-\frac {\left (1-x \left (2-\log ^2(3)\right )\right )^2}{2 x^2}+\frac {\log \left (25 e^x x+x\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 37
Rule 2551
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+x \left (-3+\log ^2(3)\right )+e^x \left (25-50 x+25 x \log ^2(3)\right )+\left (-2-50 e^x\right ) \log \left (x+25 e^x x\right )}{x^3+25 e^x x^3} \, dx\\ &=\int \left (-\frac {1}{\left (1+25 e^x\right ) x^2}+\frac {1-2 x \left (1-\frac {\log ^2(3)}{2}\right )-2 \log \left (x+25 e^x x\right )}{x^3}\right ) \, dx\\ &=-\int \frac {1}{\left (1+25 e^x\right ) x^2} \, dx+\int \frac {1-2 x \left (1-\frac {\log ^2(3)}{2}\right )-2 \log \left (x+25 e^x x\right )}{x^3} \, dx\\ &=-\int \frac {1}{\left (1+25 e^x\right ) x^2} \, dx+\int \left (\frac {1-x \left (2-\log ^2(3)\right )}{x^3}-\frac {2 \log \left (x+25 e^x x\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (x+25 e^x x\right )}{x^3} \, dx\right )-\int \frac {1}{\left (1+25 e^x\right ) x^2} \, dx+\int \frac {1-x \left (2-\log ^2(3)\right )}{x^3} \, dx\\ &=-\frac {\left (1-x \left (2-\log ^2(3)\right )\right )^2}{2 x^2}+\frac {\log \left (x+25 e^x x\right )}{x^2}-\int \frac {1}{\left (1+25 e^x\right ) x^2} \, dx-\int \frac {1+25 e^x (1+x)}{\left (1+25 e^x\right ) x^3} \, dx\\ &=-\frac {\left (1-x \left (2-\log ^2(3)\right )\right )^2}{2 x^2}+\frac {\log \left (x+25 e^x x\right )}{x^2}-\int \frac {1}{\left (1+25 e^x\right ) x^2} \, dx-\int \left (-\frac {1}{\left (1+25 e^x\right ) x^2}+\frac {1+x}{x^3}\right ) \, dx\\ &=-\frac {\left (1-x \left (2-\log ^2(3)\right )\right )^2}{2 x^2}+\frac {\log \left (x+25 e^x x\right )}{x^2}-\int \frac {1+x}{x^3} \, dx\\ &=\frac {(1+x)^2}{2 x^2}-\frac {\left (1-x \left (2-\log ^2(3)\right )\right )^2}{2 x^2}+\frac {\log \left (x+25 e^x x\right )}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 28, normalized size = 1.04 \begin {gather*} \frac {3}{x}-\frac {\log ^2(3)}{x}+\frac {\log \left (x+25 e^x x\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 25, normalized size = 0.93 \begin {gather*} -\frac {x \log \relax (3)^{2} - 3 \, x - \log \left (25 \, x e^{x} + x\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 25, normalized size = 0.93 \begin {gather*} -\frac {x \log \relax (3)^{2} - 3 \, x - \log \left (25 \, x e^{x} + x\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 24, normalized size = 0.89
method | result | size |
norman | \(\frac {\left (-\ln \relax (3)^{2}+3\right ) x +\ln \left (25 \,{\mathrm e}^{x} x +x \right )}{x^{2}}\) | \(24\) |
risch | \(\frac {\ln \left ({\mathrm e}^{x}+\frac {1}{25}\right )}{x^{2}}+\frac {-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+\frac {1}{25}\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+\frac {1}{25}\right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+\frac {1}{25}\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+\frac {1}{25}\right )\right ) \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+\frac {1}{25}\right )\right )^{2}-i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{x}+\frac {1}{25}\right )\right )^{3}-2 x \ln \relax (3)^{2}+6 x +2 \ln \relax (x )}{2 x^{2}}\) | \(115\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.91, size = 27, normalized size = 1.00 \begin {gather*} -\frac {{\left (\log \relax (3)^{2} - 3\right )} x - \log \relax (x) - \log \left (25 \, e^{x} + 1\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.56, size = 22, normalized size = 0.81 \begin {gather*} \frac {\ln \left (x+25\,x\,{\mathrm {e}}^x\right )-x\,\left ({\ln \relax (3)}^2-3\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 20, normalized size = 0.74 \begin {gather*} - \frac {-3 + \log {\relax (3 )}^{2}}{x} + \frac {\log {\left (25 x e^{x} + x \right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________